Equations
Instances For
Equations
- MaximalAbelianSubgroups G = {K : Subgroup L | IsMaximalAbelian (K.subgroupOf G) ∧ K ≤ G}
Instances For
- is_maximal' : Maximal Subgroup.IsCommutative H
Instances For
Equations
- MaximalAbelianSubgroups' G = { K : Subgroup L // IsMaximalAbelian (K.subgroupOf G) ∧ K ≤ G }
Instances For
theorem
inf_IsCommutative_of_IsCommutative_left
{G : Type u_1}
[Group G]
(H K : Subgroup G)
(hH : H.IsCommutative)
:
(H ⊓ K).IsCommutative
theorem
IsCommutative_of_IsCommutative_subgroupOf
{G : Type u_1}
[Group G]
(H K : Subgroup G)
(hH : (H.subgroupOf K).IsCommutative)
:
(H ⊓ K).IsCommutative
theorem
MaximalAbelianSubgroup.le_centralizer_meet
{G : Type u_1}
[Group G]
(M H : Subgroup G)
(hM : M ∈ MaximalAbelianSubgroups H)
(x : G)
(x_in_M : x ∈ M)
:
theorem
MaximalAbelianSubgroup.not_le_of_ne
{G : Type u_1}
[Group G]
(A B H : Subgroup G)
(hA : A ∈ MaximalAbelianSubgroups H)
(hB : B ∈ MaximalAbelianSubgroups H)
(A_ne_B : A ≠ B)
:
theorem
MaximalAbelianSubgroup.le_cen_of_mem
{G : Type u_1}
[Group G]
(A H : Subgroup G)
(hA : A ∈ MaximalAbelianSubgroups H)
(x : G)
(x_in_A : x ∈ A)
:
theorem
MaximalAbelianSubgroup.lt_cen_meet_G
{G : Type u_1}
[Group G]
(A B H : Subgroup G)
(hA : A ∈ MaximalAbelianSubgroups H)
(hB : B ∈ MaximalAbelianSubgroups H)
(A_ne_B : A ≠ B)
(x : G)
(x_in_A : x ∈ A)
(x_in_B : x ∈ B)
:
Equations
- MaximalAbelianSubgroup.center_mul H = { carrier := ↑(Subgroup.center G) * ↑H, mul_mem' := ⋯, one_mem' := ⋯, inv_mem' := ⋯ }
Instances For
theorem
MaximalAbelianSubgroup.sup_center_carrier_eq_mul
{G : Type u_1}
[Group G]
(H : Subgroup G)
:
theorem
MaximalAbelianSubgroup.center_mul_subset_center_mul
{G : Type u_1}
[Group G]
(A : Subgroup G)
:
theorem
MaximalAbelianSubgroup.IsComm_of_center_join_IsComm
{G : Type u_1}
[Group G]
(H : Subgroup G)
(hH : H.IsCommutative)
:
(Subgroup.center G ⊔ H).IsCommutative
theorem
MaximalAbelianSubgroup.center_le
(G : Type u_1)
[Group G]
(H A : Subgroup G)
(hA : A ∈ MaximalAbelianSubgroups H)
(hH : Subgroup.center G ≤ H)
:
theorem
MaximalAbelianSubgroup.singleton_of_cen_eq_G
(G : Type u_1)
[Group G]
(H : Subgroup G)
(hH : H = Subgroup.center G)
:
theorem
MaximalAbelianSubgroup.eq_center_of_card_le_two
{F : Type u_1}
[Field F]
(A G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
(center_le_G : Subgroup.center (Matrix.SpecialLinearGroup (Fin 2) F) ≤ G)
(hA : A ∈ MaximalAbelianSubgroups G)
(card_A_le_two : Nat.card ↥A ≤ 2)
:
theorem
MaximalAbelianSubgroup.centralizer_meet_G_in_MaximalAbelianSubgroups_of_noncentral
{F : Type u_1}
[Field F]
[IsAlgClosed F]
[DecidableEq F]
(G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
(x : Matrix.SpecialLinearGroup (Fin 2) F)
(hx : x ∈ G.carrier \ ↑(Subgroup.center (Matrix.SpecialLinearGroup (Fin 2) F)))
:
theorem
MaximalAbelianSubgroup.center_eq_meet_of_ne_MaximalAbelianSubgroups
{F : Type u_1}
[Field F]
[IsAlgClosed F]
[DecidableEq F]
(A B G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
(hA : A ∈ MaximalAbelianSubgroups G)
(hB : B ∈ MaximalAbelianSubgroups G)
(A_ne_B : A ≠ B)
(hG : Subgroup.center (Matrix.SpecialLinearGroup (Fin 2) F) ≤ G)
:
theorem
MaximalAbelianSubgroup.IsCyclic_and_card_Coprime_CharP_of_center_eq
{F : Type u_1}
[Field F]
{p : ℕ}
(hp : Nat.Prime p)
[C : CharP F p]
(A G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
(hA : A ∈ MaximalAbelianSubgroups G)
(hG : G = Subgroup.center (Matrix.SpecialLinearGroup (Fin 2) F))
:
theorem
MaximalAbelianSubgroup.center_not_mem
{F : Type u_1}
[Field F]
[IsAlgClosed F]
[DecidableEq F]
(G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
(hG : Subgroup.center (Matrix.SpecialLinearGroup (Fin 2) F) ≠ G)
:
theorem
MaximalAbelianSubgroup.eq_centralizer_meet_of_center_lt
{F : Type u_1}
[Field F]
[IsAlgClosed F]
[DecidableEq F]
(A G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
(center_lt : Subgroup.center (Matrix.SpecialLinearGroup (Fin 2) F) < A)
(hA : A ∈ MaximalAbelianSubgroups G)
:
∃ x ∈ G.carrier \ ↑(Subgroup.center (Matrix.SpecialLinearGroup (Fin 2) F)), A = Subgroup.centralizer {x} ⊓ G
Equations
- MaximalAbelianSubgroup.TZ_Comm = ⋯.mpr (let inst := ⋯; Subgroup.IsCommutative.commGroup (SpecialSubgroups.SZ F))
theorem
MaximalAbelianSubgroup.conj_ZT_eq_conj_Z_join_T
{F : Type u_1}
[Field F]
(c : Matrix.SpecialLinearGroup (Fin 2) F)
:
theorem
MaximalAbelianSubgroup.Z_eq_Z_meet_G
(F : Type u_1)
[Field F]
(G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
(center_le_G : Subgroup.center (Matrix.SpecialLinearGroup (Fin 2) F) ≤ G)
:
theorem
MaximalAbelianSubgroup.conj_T_join_Z_meet_G_eq_conj_T_meet_G_join_Z
{F : Type u_1}
[Field F]
{G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F)}
(center_le_G : Subgroup.center (Matrix.SpecialLinearGroup (Fin 2) F) ≤ G)
(c : Matrix.SpecialLinearGroup (Fin 2) F)
:
MulAut.conj c • (SpecialSubgroups.S F ⊔ SpecialSubgroups.Z F) ⊓ G = MulAut.conj c • SpecialSubgroups.S F ⊓ G ⊔ SpecialSubgroups.Z F
theorem
MaximalAbelianSubgroup.conj_inv_conj_eq
(F : Type u_1)
[Field F]
(G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
(c : Matrix.SpecialLinearGroup (Fin 2) F)
:
MulAut.conj c⁻¹ • (MulAut.conj c • SpecialSubgroups.S F ⊓ G ⊔ SpecialSubgroups.Z F) = SpecialSubgroups.S F ⊓ MulAut.conj c⁻¹ • G ⊔ SpecialSubgroups.Z F
theorem
MaximalAbelianSubgroup.IsCyclic_and_card_coprime_CharP_of_IsConj_d
{F : Type u_1}
[Field F]
[IsAlgClosed F]
[DecidableEq F]
{p : ℕ}
[hp' : Fact (Nat.Prime p)]
[hC : CharP F p]
(G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
[hG₀ : Finite ↥G]
(A : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
(x : Matrix.SpecialLinearGroup (Fin 2) F)
(x_not_in_center : x ∉ Subgroup.center (Matrix.SpecialLinearGroup (Fin 2) F))
(A_eq_centra : A = Subgroup.centralizer {x} ⊓ G)
(δ : Fˣ)
(x_IsConj_d : IsConj (SpecialMatrices.d δ) x)
:
theorem
MaximalAbelianSubgroup.centra_eq_conj_TZ_of_IsConj_t_or_IsConj_neg_t
{F : Type u_1}
[Field F]
[IsAlgClosed F]
[DecidableEq F]
(A G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
(σ : F)
(x : Matrix.SpecialLinearGroup (Fin 2) F)
(x_IsConj_t_or_neg_t : IsConj (SpecialMatrices.s σ) x ∨ IsConj (-SpecialMatrices.s σ) x)
(x_in_G : x ∈ G.carrier)
(x_not_in_center : x ∉ Subgroup.center (Matrix.SpecialLinearGroup (Fin 2) F))
(hx : Subgroup.centralizer {x} ⊓ G = A)
:
∃ (c : Matrix.SpecialLinearGroup (Fin 2) F), MulAut.conj c • SpecialSubgroups.SZ F = Subgroup.centralizer {x}
theorem
MaximalAbelianSubgroup.card_center_lt_card_center_Sylow
(F : Type u_1)
[Field F]
{p : ℕ}
[hp' : Fact (Nat.Prime p)]
[hC : CharP F p]
(G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
[Finite ↥G]
(S : Sylow p ↥G)
(p_le_card_center_S : p ≤ Nat.card ↥(Subgroup.center ↥↑S))
:
∃ x ∈ Subgroup.map (G.subtype.comp (↑S).subtype) (Subgroup.center ↥↑S),
x ∉ Subgroup.center (Matrix.SpecialLinearGroup (Fin 2) F)
theorem
MaximalAbelianSubgroup.mul_center_eq_left
{F : Type u_1}
[Field F]
{G : Type u_2}
[Group G]
(S Q : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
(Q_le_S : Q ≤ S)
(h' : 1 = -1 ∨ -1 ∉ S)
(hSQ :
S.carrier * ↑(Subgroup.center (Matrix.SpecialLinearGroup (Fin 2) F)) = Q.carrier * ↑(Subgroup.center (Matrix.SpecialLinearGroup (Fin 2) F)))
:
theorem
MaximalAbelianSubgroup.A_eq_Q_join_Z_of_IsConj_s_or_neg_s
{F : Type u_1}
[Field F]
[IsAlgClosed F]
[DecidableEq F]
{p : ℕ}
[hp' : Fact (Nat.Prime p)]
[hC : CharP F p]
(G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
[hG₀ : Finite ↥G]
(A : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
(hA : A ∈ MaximalAbelianSubgroups G)
(center_le_G : Subgroup.center (Matrix.SpecialLinearGroup (Fin 2) F) ≤ G)
(center_lt_A : Subgroup.center (Matrix.SpecialLinearGroup (Fin 2) F) < A)
(x : Matrix.SpecialLinearGroup (Fin 2) F)
(x_in_G : x ∈ G.carrier)
(x_not_in_center : x ∉ Subgroup.center (Matrix.SpecialLinearGroup (Fin 2) F))
(A_eq_centra : A = Subgroup.centralizer {x} ⊓ G)
(σ : F)
(x_IsConj_t_or_neg_t : IsConj (SpecialMatrices.s σ) x ∨ IsConj (-SpecialMatrices.s σ) x)
:
∃ (Q : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F)),
Nontrivial ↥Q ∧ Finite ↥Q ∧ Q ≤ G ∧ A = Q ⊔ SpecialSubgroups.Z F ∧ IsElementaryAbelian p Q ∧ ∃ (S : Sylow p ↥G), Q.subgroupOf G = ↑S
theorem
MaximalAbelianSubgroup.IsCyclic_and_card_coprime_CharP_or_fin_prod_IsElementaryAbelian_le_T_of_center_ne
{F : Type u_1}
[Field F]
[IsAlgClosed F]
[DecidableEq F]
{p : ℕ}
[hp' : Fact (Nat.Prime p)]
[hC : CharP F p]
(G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
[hG₀ : Finite ↥G]
(A : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
(hA : A ∈ MaximalAbelianSubgroups G)
(center_le_G : Subgroup.center (Matrix.SpecialLinearGroup (Fin 2) F) ≤ G)
(center_ne_G : G ≠ Subgroup.center (Matrix.SpecialLinearGroup (Fin 2) F))
:
IsCyclic ↥A ∧ (Nat.card ↥A).Coprime p ∨ ∃ (Q : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F)),
Nontrivial ↥Q ∧ Finite ↥Q ∧ Q ≤ G ∧ A = Q ⊔ SpecialSubgroups.Z F ∧ IsElementaryAbelian p Q ∧ ∃ (S : Sylow p ↥G), Q.subgroupOf G = ↑S
theorem
MaximalAbelianSubgroup.index_normalizer_le_two
{F : Type u_1}
[Field F]
{p : ℕ}
(A G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
(center_le_G : Subgroup.center (Matrix.SpecialLinearGroup (Fin 2) F) ≤ G)
(hA : A ∈ MaximalAbelianSubgroups G)
(hA' : (Nat.card ↥A).Coprime p)
:
theorem
MaximalAbelianSubgroup.of_index_normalizer_eq_two
{F : Type u_1}
[Field F]
{p : ℕ}
(A G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
(hA : A ∈ MaximalAbelianSubgroups G)
(hA' : (Nat.card ↥A).Coprime p)
(hNA : A.normalizer.index = 2)
(x : ↥A)
:
theorem
MaximalAbelianSubgroup.theorem_2_6_v_b
{F : Type u_1}
[Field F]
{p : ℕ}
[hp' : Fact (Nat.Prime p)]
(G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
(Q : Sylow p ↥G)
(h : ↑Q ≠ ⊥)
(K : Subgroup ↥G)
(hK : IsCyclic ↥K)
(hNG : (↑Q).normalizer = ↑Q ⊔ K)
:
Nat.card ↥K > Nat.card ↥(Subgroup.center (Matrix.SpecialLinearGroup (Fin 2) F)) →
Subgroup.map G.subtype K ∈ MaximalAbelianSubgroups G