Documentation

ClassificationOfSubgroups.Ch6_MaximalAbelianSubgroupClassEquation.S2_MaximalAbelianSubgroup

def IsMaximalAbelian {L : Type u_1} [Group L] (G : Subgroup L) :
Equations
Instances For
    structure MaximalAbelian {G : Type u_1} [Group G] (H : Subgroup G) extends Subgroup G :
    Type u_1
    Instances For
      def MaximalAbelianSubgroups' {L : Type u_1} [Group L] (G : Subgroup L) :
      Type u_1
      Equations
      Instances For
        theorem ne_union_left_of_ne {X : Type u_1} (A B : Set X) (not_B_le_A : ¬B A) :
        A A B
        theorem MaximalAbelianSubgroup.le_centralizer_meet {G : Type u_1} [Group G] (M H : Subgroup G) (hM : M MaximalAbelianSubgroups H) (x : G) (x_in_M : x M) :
        theorem MaximalAbelianSubgroup.not_le_of_ne {G : Type u_1} [Group G] (A B H : Subgroup G) (hA : A MaximalAbelianSubgroups H) (hB : B MaximalAbelianSubgroups H) (A_ne_B : A B) :
        ¬B A
        theorem MaximalAbelianSubgroup.le_cen_of_mem {G : Type u_1} [Group G] (A H : Subgroup G) (hA : A MaximalAbelianSubgroups H) (x : G) (x_in_A : x A) :
        theorem MaximalAbelianSubgroup.lt_cen_meet_G {G : Type u_1} [Group G] (A B H : Subgroup G) (hA : A MaximalAbelianSubgroups H) (hB : B MaximalAbelianSubgroups H) (A_ne_B : A B) (x : G) (x_in_A : x A) (x_in_B : x B) :
        Equations
        Instances For
          theorem MaximalAbelianSubgroup.order_ne_char (F : Type u_1) [Field F] {p : } [hp' : Fact (Nat.Prime p)] [hC : CharP F p] (x : Fˣ) :
          theorem MaximalAbelianSubgroup.coprime_card_fin_subgroup_of_inj_hom_group_iso_units {F : Type u_1} {G : Type u_2} [Field F] {p : } [hp' : Fact (Nat.Prime p)] [hC : CharP F p] [Group G] (H : Subgroup G) [Finite H] (f : H →* Fˣ) (hf : Function.Injective f) :
          (Nat.card H).Coprime p
          theorem MaximalAbelianSubgroup.IsCyclic_and_card_coprime_CharP_of_IsConj_d {F : Type u_1} [Field F] [IsAlgClosed F] [DecidableEq F] {p : } [hp' : Fact (Nat.Prime p)] [hC : CharP F p] (G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F)) [hG₀ : Finite G] (A : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F)) (x : Matrix.SpecialLinearGroup (Fin 2) F) (x_not_in_center : xSubgroup.center (Matrix.SpecialLinearGroup (Fin 2) F)) (A_eq_centra : A = Subgroup.centralizer {x} G) (δ : Fˣ) (x_IsConj_d : IsConj (SpecialMatrices.d δ) x) :
          theorem MaximalAbelianSubgroup.ne_zero_two_of_char_ne_two (F : Type u_1) [Field F] {p : } [hp' : Fact (Nat.Prime p)] [hC : CharP F p] (p_ne_two : p 2) :
          theorem MaximalAbelianSubgroup.card_center_lt_card_center_Sylow (F : Type u_1) [Field F] {p : } [hp' : Fact (Nat.Prime p)] [hC : CharP F p] (G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F)) [Finite G] (S : Sylow p G) (p_le_card_center_S : p Nat.card (Subgroup.center S)) :
          theorem MaximalAbelianSubgroup.mul_center_eq_left {F : Type u_1} [Field F] {G : Type u_2} [Group G] (S Q : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F)) (Q_le_S : Q S) (h' : 1 = -1 -1S) (hSQ : S.carrier * (Subgroup.center (Matrix.SpecialLinearGroup (Fin 2) F)) = Q.carrier * (Subgroup.center (Matrix.SpecialLinearGroup (Fin 2) F))) :
          S = Q
          theorem MaximalAbelianSubgroup.A_eq_Q_join_Z_of_IsConj_s_or_neg_s {F : Type u_1} [Field F] [IsAlgClosed F] [DecidableEq F] {p : } [hp' : Fact (Nat.Prime p)] [hC : CharP F p] (G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F)) [hG₀ : Finite G] (A : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F)) (hA : A MaximalAbelianSubgroups G) (center_le_G : Subgroup.center (Matrix.SpecialLinearGroup (Fin 2) F) G) (center_lt_A : Subgroup.center (Matrix.SpecialLinearGroup (Fin 2) F) < A) (x : Matrix.SpecialLinearGroup (Fin 2) F) (x_in_G : x G.carrier) (x_not_in_center : xSubgroup.center (Matrix.SpecialLinearGroup (Fin 2) F)) (A_eq_centra : A = Subgroup.centralizer {x} G) (σ : F) (x_IsConj_t_or_neg_t : IsConj (SpecialMatrices.s σ) x IsConj (-SpecialMatrices.s σ) x) :
          ∃ (Q : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F)), Nontrivial Q Finite Q Q G A = Q SpecialSubgroups.Z F IsElementaryAbelian p Q ∃ (S : Sylow p G), Q.subgroupOf G = S
          theorem MaximalAbelianSubgroup.of_index_normalizer_eq_two {F : Type u_1} [Field F] {p : } (A G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F)) (hA : A MaximalAbelianSubgroups G) (hA' : (Nat.card A).Coprime p) (hNA : A.normalizer.index = 2) (x : A) :
          yA.normalizer.carrier \ A, y * x * y⁻¹ = x⁻¹
          def MaximalAbelianSubgroup.theorem_2_6_v_a {F : Type u_1} [Field F] {p : } (hp : Nat.Prime p) (G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F)) (Q : Sylow p G) (h : Q ) :
          ∃ (K : Subgroup G), IsCyclic K (↑Q).normalizer = Q K
          Equations
          • =
          Instances For
            theorem MaximalAbelianSubgroup.theorem_2_6_v_b {F : Type u_1} [Field F] {p : } [hp' : Fact (Nat.Prime p)] (G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F)) (Q : Sylow p G) (h : Q ) (K : Subgroup G) (hK : IsCyclic K) (hNG : (↑Q).normalizer = Q K) :