Documentation

ClassificationOfSubgroups.Ch5_PropertiesOfSLOverAlgClosedField.S1_SpecialMatrices

theorem Matrix.fin_two_ext {R : Type u_1} [CommSemiring R] {M N : Matrix (Fin 2) (Fin 2) R} (h₀₀ : M 0 0 = N 0 0) (h₀₁ : M 0 1 = N 0 1) (h₁₀ : M 1 0 = N 1 0) (h₁₁ : M 1 1 = N 1 1) :
M = N
theorem SpecialLinearGroup.fin_two_ext {R : Type u} [CommRing R] (A B : Matrix.SpecialLinearGroup (Fin 2) R) (h₀₀ : A 0 0 = B 0 0) (h₀₁ : A 0 1 = B 0 1) (h₁₀ : A 1 0 = B 1 0) (h₁₁ : A 1 1 = B 1 1) :
A = B
def SpecialMatrices.s {F : Type u} [Field F] (σ : F) :
Equations
Instances For
    @[simp]
    theorem SpecialMatrices.s_zero_eq_one {F : Type u} [Field F] :
    s 0 = 1
    theorem SpecialMatrices.s_eq_s_iff {F : Type u} [Field F] (σ μ : F) :
    s σ = s μ σ = μ
    theorem SpecialMatrices.s_eq_one_iff {F : Type u} [Field F] (σ : F) :
    s σ = 1 σ = 0
    @[simp]
    theorem SpecialMatrices.s_inv {F : Type u} [Field F] (σ : F) :
    (s σ)⁻¹ = s (-σ)
    @[simp]
    theorem SpecialMatrices.inv_neg_t_eq {F : Type u} [Field F] (σ : F) :
    (-s σ)⁻¹ = -s (-σ)
    @[simp]
    theorem SpecialMatrices.s_mul_s_eq_s_add {F : Type u} [Field F] (σ μ : F) :
    s σ * s μ = s (σ + μ)
    @[simp]
    theorem SpecialMatrices.s_pow_eq_s_mul {F : Type u} [Field F] (σ : F) (n : ) :
    s σ ^ n = s (n σ)
    theorem SpecialMatrices.order_t_eq_char {F : Type u} [Field F] {p : } [hp : Fact (Nat.Prime p)] [hC : CharP F p] (σ : F) (hσ : σ 0) :
    orderOf (s σ) = p
    def SpecialMatrices.d {F : Type u_1} [Field F] (δ : Fˣ) :
    Equations
    Instances For
      @[simp]
      theorem SpecialMatrices.inv_d_eq_d_inv {F : Type u} [Field F] (δ : Fˣ) :
      (d δ)⁻¹ = d δ⁻¹
      theorem SpecialMatrices.d_eq_inv_d_inv {F : Type u} [Field F] (δ : Fˣ) :
      d δ = (d δ⁻¹)⁻¹
      theorem SpecialMatrices.d_eq_diagonal {F : Type u} [Field F] (δ : Fˣ) :
      (d δ) = Matrix.diagonal fun (i : Fin 2) => if i = 0 then δ else δ.inv
      @[simp]
      theorem SpecialMatrices.d_one_eq_one {F : Type u} [Field F] :
      d 1 = 1
      @[simp]
      theorem SpecialMatrices.d_neg_one_eq_neg_one {F : Type u} [Field F] :
      d (-1) = -1
      @[simp]
      theorem SpecialMatrices.neg_d_eq_d_neg {F : Type u} [Field F] (δ : Fˣ) :
      -d δ = d (-δ)
      theorem SpecialMatrices.d_coe_eq {F : Type u} [Field F] {δ : Fˣ} :
      (d δ) = !![δ, 0; 0, (↑δ)⁻¹]
      theorem SpecialMatrices.d_0_0_is_unit {F : Type u} [Field F] (δ : Fˣ) :
      IsUnit ((d δ) 0 0)
      @[simp]
      theorem SpecialMatrices.d_mul_d_eq_d_mul {F : Type u} [Field F] (δ ρ : Fˣ) :
      d δ * d ρ = d (δ * ρ)
      theorem SpecialMatrices.s_eq_d_iff {F : Type u} [Field F] {δ : Fˣ} {σ : F} :
      d δ = s σ δ = 1 σ = 0
      Equations
      Instances For
        @[simp]
        theorem SpecialMatrices.w_inv {F : Type u_1} [Field F] :
        def SpecialMatrices.ds {F : Type u} [Field F] (δ : Fˣ) (σ : F) :
        Equations
        Instances For
          theorem SpecialMatrices.d_mul_s_mul_d_inv_eq_s {F : Type u} [Field F] (δ : Fˣ) (σ : F) :
          d δ * s σ * (d δ)⁻¹ = s (σ * δ⁻¹ * δ⁻¹)
          Equations
          Instances For
            theorem SpecialMatrices.d_mul_s_eq_ds {F : Type u} [Field F] (δ : Fˣ) (σ : F) :
            d δ * s σ = ds δ σ
            theorem SpecialMatrices.d_mul_w_eq_dw {F : Type u} [Field F] (δ : Fˣ) :
            d δ * w = dw δ
            @[simp]
            theorem SpecialMatrices.inv_of_d_mul_w {F : Type u} [Field F] (δ : Fˣ) :
            (d δ * w)⁻¹ = d (-δ) * w
            @[simp]
            theorem SpecialMatrices.w_mul_d_eq_d_inv_w {F : Type u} [Field F] (δ : Fˣ) :
            w * d δ = (d δ)⁻¹ * w
            @[simp]
            theorem SpecialMatrices.neg_d_mul_w {F : Type u} [Field F] (δ : Fˣ) :
            -(d δ * w) = d (-δ) * w