Documentation

ClassificationOfSubgroups.Ch5_PropertiesOfSLOverAlgClosedField.S2_SpecialSubgroups

Equations
Instances For
    def SpecialSubgroups.D_iso_units (F : Type u_1) [Field F] :
    (D F) ≃* Fˣ
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      Equations
      Instances For
        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem SpecialSubgroups.S_le_L {F : Type u} [Field F] :
            S F L F
            def SpecialSubgroups.prod_iso_join_of_normal {G : Type u_1} [Group G] (H K : Subgroup G) (hHK : H K = ) [hH : H.Normal] [hK : K.Normal] :
            H × K ≃* ↥(H K)
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                theorem SpecialSubgroups.get_entries {F : Type u} [Field F] (x : Matrix.SpecialLinearGroup (Fin 2) F) :
                ∃ (α : F) (β : F) (γ : F) (δ : F), α = x 0 0 β = x 0 1 γ = x 1 0 δ = x 1 1 x = !![α, β; γ, δ]
                theorem SpecialSubgroups.Odd.neg_one_zpow {α : Type u_1} [Group α] [HasDistribNeg α] {n : } (h : Odd n) :
                (-1) ^ n = -1
                theorem SpecialSubgroups.Field.one_eq_neg_one_of_two_eq_zero {F : Type u} [Field F] (two_eq_zero : 2 = 0) :
                1 = -1
                @[simp]
                theorem SpecialSubgroups.set_Z_eq (R : Type u) [CommRing R] :
                (Z R) = {1, -1}
                @[simp]
                @[simp]
                theorem SpecialSubgroups.mem_Z_iff (R : Type u) [CommRing R] {x : Matrix.SpecialLinearGroup (Fin 2) R} :
                x Z R x = 1 x = -1
                theorem SpecialSubgroups.card_Z_eq_one_of_two_eq_zero {F : Type u} [Field F] (two_eq_zero : 2 = 0) :
                Nat.card (Z F) = 1
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  Equations
                  Instances For
                    theorem SpecialSubgroups.SZ_eq_SZ' {F : Type u_1} [Field F] :
                    SZ' F = SZ F
                    theorem SpecialSubgroups.S_mul_Z_subset_SZ {F : Type u} [Field F] :
                    (S F) * (Z F) (SZ F)
                    theorem SpecialSubgroups.IsCommutative_iff {G : Type u_1} [Group G] (H : Subgroup G) :
                    H.IsCommutative ∀ (x y : H), x * y = y * x
                    theorem SpecialSubgroups.val_eq_neg_one {F : Type u} [Field F] {a : Fˣ} :
                    a = -1 a = -1
                    theorem SpecialSubgroups.ex_of_card_D_gt_two {F : Type u} [Field F] {D₀ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F)} (hD₀ : 2 < Nat.card D₀) (D₀_leq_D : D₀ D F) :
                    ∃ (δ : Fˣ), δ 1 δ -1 SpecialMatrices.d δ D₀
                    theorem SpecialSubgroups.mem_D_iff {F : Type u} [Field F] {x : Matrix.SpecialLinearGroup (Fin 2) F} :
                    x D F ∃ (δ : Fˣ), SpecialMatrices.d δ = x