Documentation

ClassificationOfSubgroups.Ch5_PropertiesOfSLOverAlgClosedField.S5_PropertiesOfNormalizers

def lower_triangular (F : Type u) [Field F] [DecidableEq F] (a c d : F) :
Equations
Instances For
    theorem mem_H_iff_lower_triangular (F : Type u) [Field F] [DecidableEq F] {x : Matrix.SpecialLinearGroup (Fin 2) F} :
    x SpecialSubgroups.L F ∃ (a : F) (c : F) (d : F), a * d = 1 x = !![a, 0; c, d]
    theorem mem_H_iff_lower_triangular' (F : Type u) [Field F] [DecidableEq F] {x : Matrix.SpecialLinearGroup (Fin 2) F} :
    x SpecialSubgroups.L F ∃ (a : F) (c : F) (d : F), !![a, 0; c, d] = x
    theorem normalizer_subgroup_D_eq_DW (F : Type u) [Field F] {D₀ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F)} (hD₀ : 2 < Nat.card D₀) (D₀_leq_D : D₀ SpecialSubgroups.D F) :