Documentation

ClassificationOfSubgroups.Ch5_PropertiesOfSLOverAlgClosedField.S3_JordanNormalFormOfSL

@[simp]
theorem GeneralLinearGroup.coe_mk' {R : Type u_1} [CommRing R] {M : Matrix (Fin 2) (Fin 2) R} (hM : Invertible M.det) :
@[simp]
theorem GL_eq_iff_Matrix_eq {n : Type u_1} {R : Type u_2} [Fintype n] [DecidableEq n] [CommRing R] {A B : GL n R} (h : A = B) :
A = B
theorem det_GL_coe_is_unit {n : Type u_1} {R : Type u_2} [Fintype n] [DecidableEq n] [CommRing R] (G : GL n R) :
IsUnit (↑G).det
theorem associated_of_dvd_mul_irreducibles {k : Type u_1} [Field k] {q p₁ p₂ : Polynomial k} (hp₁ : Irreducible p₁) (hp₂ : Irreducible p₂) (hpq : q p₁ * p₂) :
Associated q 1 Associated q p₁ Associated q p₂ Associated q (p₁ * p₂)
theorem minpoly_eq_X_sub_C_implies_matrix_is_diagonal {n : Type u_1} {R : Type u_2} [Fintype n] [DecidableEq n] [CommRing R] [NoZeroDivisors R] {M : Matrix n n R} {a : R} (hM : minpoly R M = Polynomial.X - Polynomial.C a) :
M = Matrix.diagonal fun (x : n) => a
theorem lower_triangular_iff_top_right_entry_eq_zero {F : Type u} [Field F] {M : Matrix (Fin 2) (Fin 2) F} :
(∃ (a : F) (c : F) (d : F), !![a, 0; c, d] = M) M 0 1 = 0
theorem upper_triangular_iff_bottom_left_entry_eq_zero {F : Type u} [Field F] {M : Matrix (Fin 2) (Fin 2) F} :
(∃ (a : F) (b : F) (d : F), !![a, b; 0, d] = M) M 1 0 = 0
theorem det_eq_mul_diag_of_upper_triangular {F : Type u} [Field F] (S : Matrix.SpecialLinearGroup (Fin 2) F) (hγ : S 1 0 = 0) :
S 0 0 * S 1 1 = 1
theorem det_eq_mul_diag_of_lower_triangular {F : Type u} [Field F] (S : Matrix.SpecialLinearGroup (Fin 2) F) (hβ : S 0 1 = 0) :
S 0 0 * S 1 1 = 1
theorem SpecialLinearGroup.fin_two_diagonal_iff {F : Type u} [Field F] (x : Matrix.SpecialLinearGroup (Fin 2) F) :
x 0 1 = 0 x 1 0 = 0 ∃ (δ : Fˣ), SpecialMatrices.d δ = x
theorem SpecialLinearGroup.fin_two_shear_iff {F : Type u} [Field F] (S : Matrix.SpecialLinearGroup (Fin 2) F) :
S 0 0 = S 1 1 S 0 1 = 0 (∃ (σ : F), SpecialMatrices.s σ = S) ∃ (σ : F), -SpecialMatrices.s σ = S
theorem isConj_upper_triangular_iff {F : Type u} [Field F] [DecidableEq F] [IsAlgClosed F] {M : Matrix (Fin 2) (Fin 2) F} :
(∃ (a : F) (b : F) (d : F) (C : Matrix.SpecialLinearGroup (Fin 2) F), C * M * C⁻¹ = !![a, b; 0, d]) ∃ (c : Matrix.SpecialLinearGroup (Fin 2) F), (c * M * c⁻¹) 1 0 = 0
@[simp]
theorem Matrix.special_inv_eq {F : Type u} [Field F] {x : F} :
!![1, 0; x, 1]⁻¹ = !![1, 0; -x, 1]
theorem exists_root_of_special_poly {F : Type u} [Field F] [IsAlgClosed F] (a b c d : F) (hb : b 0) :
∃ (x : F), -b * x * x + (a - d) * x + c = 0
theorem Matrix.conj_s_eq {F : Type u} [Field F] {x a b c d : F} :
(SpecialMatrices.s x) * !![a, b; c, d] * (SpecialMatrices.s (-x)) = !![-b * x + a, b; -b * x * x + (a - d) * x + c, b * x + d]
def SpecialLinearGroup.mk' {F : Type u} [Field F] {n : } (M : Matrix (Fin n) (Fin n) F) (h : M.det = 1) :
Equations
Instances For
    theorem isTriangularizable_of_algClosed {F : Type u} [Field F] [DecidableEq F] [IsAlgClosed F] (M : Matrix (Fin 2) (Fin 2) F) :
    ∃ (a : F) (b : F) (d : F) (C : Matrix.SpecialLinearGroup (Fin 2) F), C * M * C⁻¹ = !![a, b; 0, d]
    theorem upper_triangular_isConj_diagonal_of_nonzero_det {F : Type u} [Field F] [DecidableEq F] {a b d : F} (had : a - d 0) :
    ∃ (C : Matrix.SpecialLinearGroup (Fin 2) F), C * !![a, b; 0, d] * C⁻¹ = !![a, 0; 0, d]
    theorem upper_triangular_isConj_jordan {F : Type u} [Field F] {a b : F} (hb : b 0) :
    IsConj !![a, b; 0, a] !![a, 1; 0, a]
    theorem lower_triangular_isConj_upper_triangular {F : Type u} [Field F] {a b : F} :
    ∃ (C : Matrix.SpecialLinearGroup (Fin 2) F), C * !![a, 0; -b, a] * C⁻¹ = !![a, b; 0, a]
    theorem mul_left_eq_mul_right_iff {α : Type u_1} [Monoid α] {N M : α} (c : αˣ) :
    c * M = N * c M = c⁻¹ * N * c
    theorem det_eq_det_IsConj {R : Type u} [CommRing R] {n : } {M N : Matrix (Fin n) (Fin n) R} (h : IsConj N M) :
    N.det = M.det
    theorem SpecialLinearGroup.eq_of {F : Type u} [Field F] {S L : Matrix.SpecialLinearGroup (Fin 2) F} (h : S = L) :
    S = L
    theorem IsConj_coe {F : Type u} [Field F] {M N : Matrix (Fin 2) (Fin 2) F} (hM : M.det = 1) (hN : N.det = 1) (h : ∃ (C : Matrix.SpecialLinearGroup (Fin 2) F), C * M * C⁻¹ = N) :
    ∃ (C : Matrix.SpecialLinearGroup (Fin 2) F), C * M, hM * C⁻¹ = N, hN
    theorem SL2_IsConj_d_or_IsConj_s_or_IsConj_neg_s {F : Type u} [Field F] [DecidableEq F] [IsAlgClosed F] (S : Matrix.SpecialLinearGroup (Fin 2) F) :
    (∃ (δ : Fˣ), IsConj (SpecialMatrices.d δ) S) (∃ (σ : F), IsConj (SpecialMatrices.s σ) S) ∃ (σ : F), IsConj (-SpecialMatrices.s σ) S