@[simp]
theorem
SpecialLinearGroup.coe_coe
{F : Type u}
[Field F]
{n : ℕ}
{S : Matrix.SpecialLinearGroup (Fin n) F}
:
@[simp]
theorem
GeneralLinearGroup.coe_mk'
{R : Type u_1}
[CommRing R]
{M : Matrix (Fin 2) (Fin 2) R}
(hM : Invertible M.det)
:
@[simp]
theorem
GeneralLinearGroup.coe_mk'_inv
{R : Type u_1}
[CommRing R]
{M : Matrix (Fin 2) (Fin 2) R}
{hM : Invertible M.det}
:
theorem
GL_eq_iff_Matrix_eq
{n : Type u_1}
{R : Type u_2}
[Fintype n]
[DecidableEq n]
[CommRing R]
{A B : GL n R}
(h : ↑A = ↑B)
:
theorem
det_GL_coe_is_unit
{n : Type u_1}
{R : Type u_2}
[Fintype n]
[DecidableEq n]
[CommRing R]
(G : GL n R)
:
theorem
associated_of_dvd_mul_irreducibles
{k : Type u_1}
[Field k]
{q p₁ p₂ : Polynomial k}
(hp₁ : Irreducible p₁)
(hp₂ : Irreducible p₂)
(hpq : q ∣ p₁ * p₂)
:
theorem
minpoly_eq_X_sub_C_implies_matrix_is_diagonal
{n : Type u_1}
{R : Type u_2}
[Fintype n]
[DecidableEq n]
[CommRing R]
[NoZeroDivisors R]
{M : Matrix n n R}
{a : R}
(hM : minpoly R M = Polynomial.X - Polynomial.C a)
:
theorem
det_eq_mul_diag_of_upper_triangular
{F : Type u}
[Field F]
(S : Matrix.SpecialLinearGroup (Fin 2) F)
(hγ : ↑S 1 0 = 0)
:
theorem
det_eq_mul_diag_of_lower_triangular
{F : Type u}
[Field F]
(S : Matrix.SpecialLinearGroup (Fin 2) F)
(hβ : ↑S 0 1 = 0)
:
theorem
SpecialLinearGroup.fin_two_diagonal_iff
{F : Type u}
[Field F]
(x : Matrix.SpecialLinearGroup (Fin 2) F)
:
theorem
SpecialLinearGroup.fin_two_antidiagonal_iff
{F : Type u}
[Field F]
(x : Matrix.SpecialLinearGroup (Fin 2) F)
:
theorem
SpecialLinearGroup.fin_two_shear_iff
{F : Type u}
[Field F]
(S : Matrix.SpecialLinearGroup (Fin 2) F)
:
↑S 0 0 = ↑S 1 1 ∧ ↑S 0 1 = 0 ↔ (∃ (σ : F), SpecialMatrices.s σ = S) ∨ ∃ (σ : F), -SpecialMatrices.s σ = S
theorem
isConj_upper_triangular_iff
{F : Type u}
[Field F]
[DecidableEq F]
[IsAlgClosed F]
{M : Matrix (Fin 2) (Fin 2) F}
:
def
SpecialLinearGroup.mk'
{F : Type u}
[Field F]
{n : ℕ}
(M : Matrix (Fin n) (Fin n) F)
(h : M.det = 1)
:
Matrix.SpecialLinearGroup (Fin n) F
Equations
- SpecialLinearGroup.mk' M h = ⟨M, h⟩
Instances For
theorem
isTriangularizable_of_algClosed
{F : Type u}
[Field F]
[DecidableEq F]
[IsAlgClosed F]
(M : Matrix (Fin 2) (Fin 2) F)
:
theorem
upper_triangular_isConj_diagonal_of_nonzero_det
{F : Type u}
[Field F]
[DecidableEq F]
{a b d : F}
(had : a - d ≠ 0)
:
theorem
SpecialLinearGroup.eq_of
{F : Type u}
[Field F]
{S L : Matrix.SpecialLinearGroup (Fin 2) F}
(h : ↑S = ↑L)
:
theorem
SL2_IsConj_d_or_IsConj_s_or_IsConj_neg_s
{F : Type u}
[Field F]
[DecidableEq F]
[IsAlgClosed F]
(S : Matrix.SpecialLinearGroup (Fin 2) F)
:
(∃ (δ : Fˣ), IsConj (SpecialMatrices.d δ) S) ∨ (∃ (σ : F), IsConj (SpecialMatrices.s σ) S) ∨ ∃ (σ : F), IsConj (-SpecialMatrices.s σ) S