Multiplicative properties of Hahn series #
If Γ is ordered and R has zero, then HahnSeries Γ R consists of formal series over Γ with
coefficients in R, whose supports are partially well-ordered. With further structure on R and
Γ, we can add further structure on HahnSeries Γ R. We prove some facts about multiplying
Hahn series.
Main Definitions #
HahnModuleis a type alias forHahnSeries, which we use for defining scalar multiplication ofHahnSeries Γ RonHahnModule Γ' R Vfor anR-moduleV, whereΓ'admits an ordered cancellative vector addition operation fromΓ.
Main results #
- If
Ris a (commutative) (semi-)ring, then so isHahnSeries Γ R. - If
Vis anR-module, thenHahnModule Γ' R Vis aHahnSeries Γ R-module.
TODO #
- Scalar tower instances
References #
- [J. van der Hoeven, Operators on Generalized Power Series][van_der_hoeven]
Equations
- HahnSeries.instOne = { one := (HahnSeries.single 0) 1 }
Alias of HahnSeries.coeff_one.
We introduce a type alias for HahnSeries in order to work with scalar multiplication by
series. If we wrote a SMul (HahnSeries Γ R) (HahnSeries Γ V) instance, then when
V = HahnSeries Γ R, we would have two different actions of HahnSeries Γ R on HahnSeries Γ V.
See Mathlib.Algebra.Polynomial.Module for more discussion on this problem.
Equations
- HahnModule Γ R V = HahnSeries Γ V
Instances For
The casting function to the type synonym.
Equations
- HahnModule.of R = Equiv.refl (HahnSeries Γ V)
Instances For
Recursion principle to reduce a result about the synonym to the original type.
Equations
- HahnModule.rec h x = h ((HahnModule.of R).symm x)
Instances For
Equations
Equations
- HahnModule.instBaseSMul = inferInstanceAs (SMul R (HahnSeries Γ V))
Equations
- One or more equations did not get rendered due to their size.
Alias of HahnModule.coeff_smul.
Equations
Equations
Alias of HahnModule.coeff_smul_right.
Alias of HahnModule.coeff_smul_left.
Equations
Alias of HahnModule.coeff_single_smul_vadd.
Alias of HahnModule.coeff_single_zero_smul.
Alias of HahnModule.coeff_smul_order_add_order.
Equations
- HahnSeries.instMul = { mul := fun (x y : HahnSeries Γ R) => (HahnModule.of R).symm (x • (HahnModule.of R) y) }
Alias of HahnSeries.coeff_mul.
Alias of HahnSeries.coeff_mul_left'.
Alias of HahnSeries.coeff_mul_right'.
Equations
Alias of HahnSeries.coeff_single_mul_add.
Alias of HahnSeries.coeff_mul_single_add.
Alias of HahnSeries.coeff_mul_single_zero.
Alias of HahnSeries.coeff_single_zero_mul.
Alias of HahnSeries.coeff_mul_order_add_order.
Equations
Equations
Equations
- HahnSeries.instSemiring = Semiring.mk ⋯ ⋯ ⋯ ⋯ npowRecAuto ⋯ ⋯
Equations
Equations
Equations
Equations
- HahnSeries.instNonAssocRing = NonAssocRing.mk ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
Equations
- HahnSeries.instRing = Ring.mk ⋯ SubNegMonoid.zsmul ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
Equations
Equations
- HahnModule.instBaseModule = inferInstanceAs (Module R (HahnSeries Γ' V))
Equations
C a is the constant Hahn Series a. C is provided as a ring homomorphism.
Equations
- HahnSeries.C = { toFun := ⇑(HahnSeries.single 0), map_one' := ⋯, map_mul' := ⋯, map_zero' := ⋯, map_add' := ⋯ }
Instances For
Extending the domain of Hahn series is a ring homomorphism.
Equations
- HahnSeries.embDomainRingHom f hfi hf = { toFun := HahnSeries.embDomain { toFun := ⇑f, inj' := hfi, map_rel_iff' := ⋯ }, map_one' := ⋯, map_mul' := ⋯, map_zero' := ⋯, map_add' := ⋯ }
Instances For
Equations
- HahnSeries.instAlgebra = Algebra.mk (HahnSeries.C.comp (algebraMap R A)) ⋯ ⋯
Extending the domain of Hahn series is an algebra homomorphism.
Equations
- HahnSeries.embDomainAlgHom f hfi hf = { toRingHom := HahnSeries.embDomainRingHom f hfi hf, commutes' := ⋯ }