Multiplication antidiagonal as a Finset. #
We construct the Finset of all pairs
of an element in s and an element in t that multiply to a,
given that s and t are well-ordered.
theorem
Set.IsPWO.mul
{α : Type u_1}
{s t : Set α}
[OrderedCancelCommMonoid α]
(hs : s.IsPWO)
(ht : t.IsPWO)
:
theorem
Set.IsPWO.add
{α : Type u_1}
{s t : Set α}
[OrderedCancelAddCommMonoid α]
(hs : s.IsPWO)
(ht : t.IsPWO)
:
theorem
Set.IsWF.mul
{α : Type u_1}
{s t : Set α}
[LinearOrderedCancelCommMonoid α]
(hs : s.IsWF)
(ht : t.IsWF)
:
theorem
Set.IsWF.add
{α : Type u_1}
{s t : Set α}
[LinearOrderedCancelAddCommMonoid α]
(hs : s.IsWF)
(ht : t.IsWF)
:
noncomputable def
Finset.mulAntidiagonal
{α : Type u_1}
[OrderedCancelCommMonoid α]
{s t : Set α}
(hs : s.IsPWO)
(ht : t.IsPWO)
(a : α)
:
Finset.mulAntidiagonal hs ht a is the set of all pairs of an element in s and an
element in t that multiply to a, but its construction requires proofs that s and t are
well-ordered.
Equations
- Finset.mulAntidiagonal hs ht a = ⋯.toFinset
Instances For
noncomputable def
Finset.addAntidiagonal
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
{s t : Set α}
(hs : s.IsPWO)
(ht : t.IsPWO)
(a : α)
:
Finset.addAntidiagonal hs ht a is the set of all pairs of an element in
s and an element in t that add to a, but its construction requires proofs that s and t are
well-ordered.
Equations
- Finset.addAntidiagonal hs ht a = ⋯.toFinset
Instances For
theorem
Finset.mulAntidiagonal_mono_left
{α : Type u_1}
[OrderedCancelCommMonoid α]
{s t : Set α}
{hs : s.IsPWO}
{ht : t.IsPWO}
{a : α}
{u : Set α}
{hu : u.IsPWO}
(h : u ⊆ s)
:
theorem
Finset.addAntidiagonal_mono_left
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
{s t : Set α}
{hs : s.IsPWO}
{ht : t.IsPWO}
{a : α}
{u : Set α}
{hu : u.IsPWO}
(h : u ⊆ s)
:
theorem
Finset.mulAntidiagonal_mono_right
{α : Type u_1}
[OrderedCancelCommMonoid α]
{s t : Set α}
{hs : s.IsPWO}
{ht : t.IsPWO}
{a : α}
{u : Set α}
{hu : u.IsPWO}
(h : u ⊆ t)
:
theorem
Finset.addAntidiagonal_mono_right
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
{s t : Set α}
{hs : s.IsPWO}
{ht : t.IsPWO}
{a : α}
{u : Set α}
{hu : u.IsPWO}
(h : u ⊆ t)
:
theorem
Finset.swap_mem_mulAntidiagonal
{α : Type u_1}
[OrderedCancelCommMonoid α]
{s t : Set α}
{hs : s.IsPWO}
{ht : t.IsPWO}
{a : α}
{x : α × α}
:
theorem
Finset.swap_mem_addAntidiagonal
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
{s t : Set α}
{hs : s.IsPWO}
{ht : t.IsPWO}
{a : α}
{x : α × α}
:
theorem
Finset.support_mulAntidiagonal_subset_mul
{α : Type u_1}
[OrderedCancelCommMonoid α]
{s t : Set α}
{hs : s.IsPWO}
{ht : t.IsPWO}
:
theorem
Finset.support_addAntidiagonal_subset_add
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
{s t : Set α}
{hs : s.IsPWO}
{ht : t.IsPWO}
:
theorem
Finset.isPWO_support_mulAntidiagonal
{α : Type u_1}
[OrderedCancelCommMonoid α]
{s t : Set α}
{hs : s.IsPWO}
{ht : t.IsPWO}
:
theorem
Finset.isPWO_support_addAntidiagonal
{α : Type u_1}
[OrderedCancelAddCommMonoid α]
{s t : Set α}
{hs : s.IsPWO}
{ht : t.IsPWO}
: