theorem
Sylow.not_normal_subgroup_of_G
{F : Type u_1}
[Field F]
{p : ℕ}
[Fact (Nat.Prime p)]
[CharP F p]
(G K : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
[Finite ↥G]
(Q : Sylow p ↥G)
(hK : K ∈ MaximalAbelianSubgroups G)
(hQK : Subgroup.map G.subtype (↑Q).normalizer = Subgroup.map G.subtype ↑Q ⊔ K)
:
theorem
dickson_classification_theorem_class_I
{G : Type u_2}
{F : Type u_1}
[Field F]
{p : ℕ}
[CharP F p]
(hp : Prime p)
(hp' : p = 0 ∨ (Nat.card G).Coprime p)
(G✝ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
[Finite ↥G✝]
:
IsCyclic ↥G✝ ∨ ∃ (n : ℕ) (φ : ↥G✝ ≃* DihedralGroup n),
True ∨ ∃ (φ : ↥G✝ ≃* Matrix.SpecialLinearGroup (Fin 2) (GaloisField 3 1)),
True ∨ ∃ (φ : ↥G✝ ≃* Matrix.SpecialLinearGroup (Fin 2) (GaloisField 5 1)),
True ∨ ∃ (φ : ↥G✝ ≃* GL (Fin 2) (GaloisField 3 1)), True
theorem
dickson_classification_theorem_class_II
{G : Type u_2}
{F : Type u_1}
[Field F]
{p : ℕ}
[Fact (Nat.Prime p)]
[CharP F p]
(hp : Prime p)
(hp' : p ∣ Nat.card G)
(G✝ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
[Finite ↥G✝]
:
∃ (Q : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F)),
IsElementaryAbelian p Q ∧ Q.Normal ∧ ∃ (φ : ↥G✝ ≃* ↥Q),
True ∨ (p = 2 ∧ ∃ (n : ℕ) (φ : ↥G✝ ≃* DihedralGroup n), Odd n) ∨ ∃ (φ : ↥G✝ ≃* Matrix.SpecialLinearGroup (Fin 2) (GaloisField 5 1)),
True ∨ ∃ (k : ℕ+) (φ : ↥G✝ ≃* GaloisField p ↑k),
True ∨ ∃ (k : ℕ+) (x : GaloisField p (2 * ↑k)),
orderOf x ^ 2 = p ^ ↑k ∧ ∃ (φ : ↥G✝ ≃* Matrix.SpecialLinearGroup (Fin 2) (GaloisField p ↑k)), True