Documentation

ClassificationOfSubgroups.Ch7_DicksonsClassificationTheorem

theorem IsPGroup.not_le_normalizer {F : Type u_1} [Field F] {p : } [Fact (Nat.Prime p)] [CharP F p] (G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F)) (H K : Subgroup G) (hK : IsPGroup p K) (H_lt_K : H < K) :
theorem Sylow.not_normal_subgroup_of_G {F : Type u_1} [Field F] {p : } [Fact (Nat.Prime p)] [CharP F p] (G K : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F)) [Finite G] (Q : Sylow p G) (hK : K MaximalAbelianSubgroups G) (hQK : Subgroup.map G.subtype (↑Q).normalizer = Subgroup.map G.subtype Q K) :
¬(↑Q).Normal
def R (F : Type u_1) [Field F] (p : ) [Fact (Nat.Prime p)] [CharP F p] (k : ℕ+) :
Set F
Equations
Instances For
    instance field_R {F : Type u_1} [Field F] {p : } [Fact (Nat.Prime p)] [CharP F p] {k : ℕ+} :
    Field (R F p k)
    Equations
    @[reducible, inline]
    abbrev SL (n : Type u_1) [DecidableEq n] [Fintype n] (R : Type u_2) [CommRing R] :
    Type (max 0 u_1 u_2)
    Equations
    Instances For
      theorem card_SL_field {𝔽 : Type u_1} [Field 𝔽] [Fintype 𝔽] (n : ) :
      Nat.card (SL (Fin n) 𝔽) = Nat.card (GL (Fin n) 𝔽) / (Fintype.card 𝔽 - 1)
      theorem dickson_classification_theorem_class_I {G : Type u_2} {F : Type u_1} [Field F] {p : } [CharP F p] (hp : Prime p) (hp' : p = 0 (Nat.card G).Coprime p) (G✝ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F)) [Finite G✝] :
      IsCyclic G✝ ∃ (n : ) (φ : G✝ ≃* DihedralGroup n), True ∃ (φ : G✝ ≃* Matrix.SpecialLinearGroup (Fin 2) (GaloisField 3 1)), True ∃ (φ : G✝ ≃* Matrix.SpecialLinearGroup (Fin 2) (GaloisField 5 1)), True ∃ (φ : G✝ ≃* GL (Fin 2) (GaloisField 3 1)), True
      theorem dickson_classification_theorem_class_II {G : Type u_2} {F : Type u_1} [Field F] {p : } [Fact (Nat.Prime p)] [CharP F p] (hp : Prime p) (hp' : p Nat.card G) (G✝ : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F)) [Finite G✝] :
      ∃ (Q : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F)), IsElementaryAbelian p Q Q.Normal ∃ (φ : G✝ ≃* Q), True (p = 2 ∃ (n : ) (φ : G✝ ≃* DihedralGroup n), Odd n) ∃ (φ : G✝ ≃* Matrix.SpecialLinearGroup (Fin 2) (GaloisField 5 1)), True ∃ (k : ℕ+) (φ : G✝ ≃* GaloisField p k), True ∃ (k : ℕ+) (x : GaloisField p (2 * k)), orderOf x ^ 2 = p ^ k ∃ (φ : G✝ ≃* Matrix.SpecialLinearGroup (Fin 2) (GaloisField p k)), True