def
noncenter_MaximalAbelianSubgroups
{F : Type u_1}
[Field F]
(G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
:
Set (Set (Matrix.SpecialLinearGroup (Fin 2) F))
Equations
- noncenter_MaximalAbelianSubgroups G = {x : Set (Matrix.SpecialLinearGroup (Fin 2) F) | ∃ K ∈ MaximalAbelianSubgroups G, K.noncenter = x}
Instances For
instance
instSetoidElemSetSpecialLinearGroupFinOfNatNatNoncenter_MaximalAbelianSubgroups
{F : Type u_1}
[Field F]
{G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F)}
:
Equations
- instSetoidElemSetSpecialLinearGroupFinOfNatNatNoncenter_MaximalAbelianSubgroups = { r := fun (Aᵢ Aⱼ : ↑(noncenter_MaximalAbelianSubgroups G)) => IsConj ↑Aᵢ ↑Aⱼ, iseqv := ⋯ }
def
noncenter_C
{F : Type u_1}
[Field F]
(A G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
[Finite ↥G]
:
Set (Matrix.SpecialLinearGroup (Fin 2) F)
Equations
- noncenter_C A G = ⋃ x ∈ G, MulAut.conj x • A.noncenter
Instances For
theorem
card_noncenter_C_eq_card_A_mul_card_noncenter_ConjClass
{F : Type u_1}
[Field F]
(G A : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
[Finite ↥G]
:
theorem
subgroup_sdiff_center_eq_union_noncenter_C
{F : Type u_1}
[Field F]
(G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
[Finite ↥G]
:
G.carrier \ ↑(Subgroup.center (Matrix.SpecialLinearGroup (Fin 2) F)) = ⋃ A ∈ MaximalAbelianSubgroups G, noncenter_C A G
theorem
card_noncenter_ConjClassOfSet_eq_card_ConjClassOfSet
{G : Type u_1}
[Group G]
(A : Subgroup G)
:
theorem
card_ConjClassOfSet_eq_index_normalizer
{F : Type u_1}
[Field F]
(A G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
:
instance
instFintypeElemSubgroupMaximalAbelianSubgroupsOfFiniteSubtypeMem
{L : Type u_1}
[Group L]
{G : Subgroup L}
[Finite ↥G]
:
theorem
normalizer_noncentral_eq
{F : Type u_1}
[Field F]
(A G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
[Finite ↥G]
(hA : A ∈ MaximalAbelianSubgroups G)
:
theorem
normalizer_Sylow_join_center_eq_normalizer_Sylow
{F : Type u_1}
[Field F]
{p : ℕ}
[Fact (Nat.Prime p)]
[CharP F p]
(G : Subgroup (Matrix.SpecialLinearGroup (Fin 2) F))
[Finite ↥G]
(Q : Sylow p ↥G)
:
(Subgroup.map G.subtype ↑Q ⊔ Subgroup.center (Matrix.SpecialLinearGroup (Fin 2) F)).normalizer = (Subgroup.map G.subtype ↑Q).normalizer