Intervals as initial segments #
We show that Set.Iic and Set.Iio are respectively initial and
principal segments, and that any principal segment f is order
isomorphic to Set.Iio f.top.
Set.Iic j is an initial segment.
Equations
- Set.initialSegIic j = { toFun := fun (x : ↑(Set.Iic j)) => match x with | ⟨j_1, hj⟩ => j_1, inj' := ⋯, map_rel_iff' := ⋯, mem_range_of_rel' := ⋯ }
Instances For
@[simp]
Set.Iio j is a principal segment.
Equations
- Set.principalSegIio j = { toFun := fun (x : ↑(Set.Iio j)) => match x with | ⟨j_1, hj⟩ => j_1, inj' := ⋯, map_rel_iff' := ⋯, top := j, mem_range_iff_rel' := ⋯ }
Instances For
@[simp]
@[simp]
@[simp]
If i ≤ j, then Set.Iic i is an initial segment of Set.Iic j.
Equations
- Set.initialSegIicIicOfLE h = { toFun := fun (x : ↑(Set.Iic i)) => match x with | ⟨k, hk⟩ => ⟨k, ⋯⟩, inj' := ⋯, map_rel_iff' := ⋯, mem_range_of_rel' := ⋯ }
Instances For
@[simp]
theorem
Set.initialSegIicIicOfLE_toFun_coe
{α : Type u_1}
[Preorder α]
{i j : α}
(h : i ≤ j)
(x✝ : ↑(Iic i))
:
If i ≤ j, then Set.Iio i is a principal segment of Set.Iic j.
Equations
- Set.principalSegIioIicOfLE h = { toFun := fun (x : ↑(Set.Iio i)) => match x with | ⟨k, hk⟩ => ⟨k, ⋯⟩, inj' := ⋯, map_rel_iff' := ⋯, top := ⟨i, h⟩, mem_range_iff_rel' := ⋯ }
Instances For
@[simp]
@[simp]
theorem
Set.principalSegIioIicOfLE_toRelEmbedding
{α : Type u_1}
[Preorder α]
{i j : α}
(h : i ≤ j)
(k : ↑(Iio i))
:
noncomputable def
PrincipalSeg.orderIsoIio
{α : Type u_1}
{β : Type u_2}
[PartialOrder α]
[PartialOrder β]
(f : (fun (x1 x2 : α) => x1 < x2) ≺i fun (x1 x2 : β) => x1 < x2)
:
If f : α <i β is a principal segment, this is the induced order
isomorphism α ≃o Set.Iio f.top.
Equations
- f.orderIsoIio = { toEquiv := Equiv.ofBijective (fun (a : α) => ⟨f.toRelEmbedding a, ⋯⟩) ⋯, map_rel_iff' := ⋯ }
Instances For
@[simp]
theorem
PrincipalSeg.orderIsoIio_apply_coe
{α : Type u_1}
{β : Type u_2}
[PartialOrder α]
[PartialOrder β]
(f : (fun (x1 x2 : α) => x1 < x2) ≺i fun (x1 x2 : β) => x1 < x2)
(a : α)
: