Double cosets #
This file defines double cosets for two subgroups H K of a group G and the quotient of G by
the double coset relation, i.e. H \ G / K. We also prove that G can be written as a disjoint
union of the double cosets and that if one of H or K is the trivial group (i.e. ⊥ ) then
this is the usual left or right quotient of a group by a subgroup.
Main definitions #
rel: The double coset relation defined by two subgroupsH KofG.Doset.quotient: The quotient ofGby the double coset relation, i.e,H \ G / K.
The setoid defined by the double_coset relation
Equations
- Doset.setoid H K = Setoid.ker fun (x : G) => Doset.doset x H K
Instances For
Quotient of G by the double coset relation, i.e. H \ G / K
Equations
- Doset.Quotient H K = Quotient (Doset.setoid H K)
Instances For
Create a doset out of an element of H \ G / K
Equations
- Doset.quotToDoset H K q = Doset.doset (Quotient.out q) ↑H ↑K
Instances For
Equations
- Doset.instInhabitedQuotientCoeSubgroup H K = { default := Doset.mk H K 1 }
@[deprecated Doset.mk_out_eq_mul (since := "2024-10-19")]
Alias of Doset.mk_out_eq_mul.
theorem
Doset.disjoint_out
{G : Type u_1}
[Group G]
{H K : Subgroup G}
{a b : Quotient ↑H ↑K}
:
a ≠ b → Disjoint (doset (Quotient.out a) ↑H ↑K) (doset (Quotient.out b) ↑H ↑K)
@[deprecated Doset.disjoint_out (since := "2024-10-19")]
theorem
Doset.disjoint_out'
{G : Type u_1}
[Group G]
{H K : Subgroup G}
{a b : Quotient ↑H ↑K}
:
a ≠ b → Disjoint (doset (Quotient.out a) ↑H ↑K) (doset (Quotient.out b) ↑H ↑K)
Alias of Doset.disjoint_out.