Documentation

Mathlib.Computability.Language

Languages #

This file contains the definition and operations on formal languages over an alphabet. Note that "strings" are implemented as lists over the alphabet. Union and concatenation define a Kleene algebra over the languages. In addition to that, we define a reversal of a language and prove that it behaves well with respect to other language operations.

def Language (α : Type u_4) :
Type u_4

A language is a set of strings over an alphabet.

Equations
instance Language.instInsertList {α : Type u_1} :
Insert (List α) (Language α)
Equations
instance Language.instZero {α : Type u_1} :

Zero language has no elements.

Equations
instance Language.instOne {α : Type u_1} :

1 : Language α contains only one element [].

Equations
instance Language.instInhabited {α : Type u_1} :
Equations
instance Language.instAdd {α : Type u_1} :

The sum of two languages is their union.

Equations
instance Language.instMul {α : Type u_1} :

The product of two languages l and m is the language made of the strings x ++ y where x ∈ l and y ∈ m.

Equations
theorem Language.zero_def {α : Type u_1} :
0 =
theorem Language.one_def {α : Type u_1} :
theorem Language.add_def {α : Type u_1} (l m : Language α) :
l + m = l m
theorem Language.mul_def {α : Type u_1} (l m : Language α) :
l * m = Set.image2 (fun (x1 x2 : List α) => x1 ++ x2) l m
instance Language.instKStar {α : Type u_1} :

The Kleene star of a language L is the set of all strings which can be written by concatenating strings from L.

Equations
theorem Language.kstar_def {α : Type u_1} (l : Language α) :
KStar.kstar l = {x : List α | ∃ (L : List (List α)), x = L.flatten yL, y l}
theorem Language.ext {α : Type u_1} {l m : Language α} (h : ∀ (x : List α), x l x m) :
l = m
@[simp]
theorem Language.not_mem_zero {α : Type u_1} (x : List α) :
x0
@[simp]
theorem Language.mem_one {α : Type u_1} (x : List α) :
x 1 x = []
theorem Language.nil_mem_one {α : Type u_1} :
theorem Language.mem_add {α : Type u_1} (l m : Language α) (x : List α) :
x l + m x l x m
theorem Language.mem_mul {α : Type u_1} {l m : Language α} {x : List α} :
x l * m al, bm, a ++ b = x
theorem Language.append_mem_mul {α : Type u_1} {l m : Language α} {a b : List α} :
a lb ma ++ b l * m
theorem Language.mem_kstar {α : Type u_1} {l : Language α} {x : List α} :
x KStar.kstar l ∃ (L : List (List α)), x = L.flatten yL, y l
theorem Language.join_mem_kstar {α : Type u_1} {l : Language α} {L : List (List α)} (h : yL, y l) :
instance Language.instSemiring {α : Type u_1} :
Equations
@[simp]
theorem Language.add_self {α : Type u_1} (l : Language α) :
l + l = l
def Language.map {α : Type u_1} {β : Type u_2} (f : αβ) :

Maps the alphabet of a language.

Equations
@[simp]
theorem Language.map_id {α : Type u_1} (l : Language α) :
(map id) l = l
@[simp]
theorem Language.map_map {α : Type u_1} {β : Type u_2} {γ : Type u_3} (g : βγ) (f : αβ) (l : Language α) :
(map g) ((map f) l) = (map (g f)) l
theorem Language.mem_kstar_iff_exists_nonempty {α : Type u_1} {l : Language α} {x : List α} :
x KStar.kstar l ∃ (S : List (List α)), x = S.flatten yS, y l y []
theorem Language.kstar_def_nonempty {α : Type u_1} (l : Language α) :
KStar.kstar l = {x : List α | ∃ (S : List (List α)), x = S.flatten yS, y l y []}
theorem Language.le_iff {α : Type u_1} (l m : Language α) :
l m l + m = m
theorem Language.le_mul_congr {α : Type u_1} {l₁ l₂ m₁ m₂ : Language α} :
l₁ m₁l₂ m₂l₁ * l₂ m₁ * m₂
theorem Language.le_add_congr {α : Type u_1} {l₁ l₂ m₁ m₂ : Language α} :
l₁ m₁l₂ m₂l₁ + l₂ m₁ + m₂
theorem Language.mem_iSup {α : Type u_1} {ι : Sort v} {l : ιLanguage α} {x : List α} :
x ⨆ (i : ι), l i ∃ (i : ι), x l i
theorem Language.iSup_mul {α : Type u_1} {ι : Sort v} (l : ιLanguage α) (m : Language α) :
(⨆ (i : ι), l i) * m = ⨆ (i : ι), l i * m
theorem Language.mul_iSup {α : Type u_1} {ι : Sort v} (l : ιLanguage α) (m : Language α) :
m * ⨆ (i : ι), l i = ⨆ (i : ι), m * l i
theorem Language.iSup_add {α : Type u_1} {ι : Sort v} [Nonempty ι] (l : ιLanguage α) (m : Language α) :
(⨆ (i : ι), l i) + m = ⨆ (i : ι), l i + m
theorem Language.add_iSup {α : Type u_1} {ι : Sort v} [Nonempty ι] (l : ιLanguage α) (m : Language α) :
m + ⨆ (i : ι), l i = ⨆ (i : ι), m + l i
theorem Language.mem_pow {α : Type u_1} {l : Language α} {x : List α} {n : } :
x l ^ n ∃ (S : List (List α)), x = S.flatten S.length = n yS, y l
theorem Language.kstar_eq_iSup_pow {α : Type u_1} (l : Language α) :
KStar.kstar l = ⨆ (i : ), l ^ i
@[simp]
theorem Language.map_kstar {α : Type u_1} {β : Type u_2} (f : αβ) (l : Language α) :
(map f) (KStar.kstar l) = KStar.kstar ((map f) l)
def Language.reverse {α : Type u_1} (l : Language α) :

Language l.reverse is defined as the set of words from l backwards.

Equations
@[simp]
theorem Language.mem_reverse {α : Type u_1} {l : Language α} {a : List α} :
theorem Language.reverse_mem_reverse {α : Type u_1} {l : Language α} {a : List α} :
@[simp]
theorem Language.reverse_zero {α : Type u_1} :
@[simp]
theorem Language.reverse_one {α : Type u_1} :
@[simp]
theorem Language.reverse_reverse {α : Type u_1} (l : Language α) :
@[simp]
theorem Language.reverse_add {α : Type u_1} (l m : Language α) :
@[simp]
theorem Language.reverse_mul {α : Type u_1} (l m : Language α) :
@[simp]
theorem Language.reverse_iSup {α : Type u_1} {ι : Sort u_4} (l : ιLanguage α) :
(⨆ (i : ι), l i).reverse = ⨆ (i : ι), (l i).reverse
@[simp]
theorem Language.reverse_iInf {α : Type u_1} {ι : Sort u_4} (l : ιLanguage α) :
(⨅ (i : ι), l i).reverse = ⨅ (i : ι), (l i).reverse

Language.reverse as a ring isomorphism to the opposite ring.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
@[simp]
theorem Language.reverse_pow {α : Type u_1} (l : Language α) (n : ) :
(l ^ n).reverse = l.reverse ^ n
inductive Symbol (T : Type u_4) (N : Type u_5) :
Type (max u_4 u_5)

Symbols for use by all kinds of grammars.

  • terminal {T : Type u_4} {N : Type u_5} (t : T) : Symbol T N

    Terminal symbols (of the same type as the language)

  • nonterminal {T : Type u_4} {N : Type u_5} (n : N) : Symbol T N

    Nonterminal symbols (must not be present at the end of word being generated)

instance instDecidableEqSymbol {T✝ : Type u_4} {N✝ : Type u_5} [DecidableEq T✝] [DecidableEq N✝] :
DecidableEq (Symbol T✝ N✝)
Equations
instance instReprSymbol {T✝ : Type u_4} {N✝ : Type u_5} [Repr T✝] [Repr N✝] :
Repr (Symbol T✝ N✝)
Equations
instance instFintypeSymbol {T✝ : Type u_4} {N✝ : Type u_5} [Fintype T✝] [Fintype N✝] :
Fintype (Symbol T✝ N✝)
Equations