Documentation

Mathlib.AlgebraicGeometry.Restrict

Restriction of Schemes and Morphisms #

Main definition #

Open subset of a scheme as a scheme.

Equations

The restriction of a scheme to an open subset.

Equations

The global sections of the restriction is isomorphic to the sections on the open set.

Equations
def AlgebraicGeometry.Scheme.Opens.stalkIso {X : Scheme} (U : X.Opens) (x : U) :
(↑U).presheaf.stalk x X.presheaf.stalk x

The stalks of an open subscheme are isomorphic to the stalks of the original scheme.

Equations
@[simp]
theorem AlgebraicGeometry.Scheme.Opens.germ_stalkIso_hom {X : Scheme} (U : X.Opens) {V : (↑U).Opens} (x : U) (hx : x V) :
theorem AlgebraicGeometry.Scheme.Opens.germ_stalkIso_inv {X : Scheme} (U : X.Opens) (V : (↑U).Opens) (x : U) (hx : x V) :
def AlgebraicGeometry.Scheme.openCoverOfISupEqTop {s : Type u_1} (X : Scheme) (U : sX.Opens) (hU : ⨆ (i : s), U i = ) :

If U is a family of open sets that covers X, then X.restrict U forms an X.open_cover.

Equations
@[simp]
theorem AlgebraicGeometry.Scheme.openCoverOfISupEqTop_J {s : Type u_1} (X : Scheme) (U : sX.Opens) (hU : ⨆ (i : s), U i = ) :
@[simp]
theorem AlgebraicGeometry.Scheme.openCoverOfISupEqTop_obj {s : Type u_1} (X : Scheme) (U : sX.Opens) (hU : ⨆ (i : s), U i = ) (i : s) :
(X.openCoverOfISupEqTop U hU).obj i = (U i)
@[simp]
theorem AlgebraicGeometry.Scheme.openCoverOfISupEqTop_map {s : Type u_1} (X : Scheme) (U : sX.Opens) (hU : ⨆ (i : s), U i = ) (i : s) :
(X.openCoverOfISupEqTop U hU).map i = (U i).ι
def AlgebraicGeometry.opensRestrict {X : Scheme} (U : X.Opens) :
(↑U).Opens { V : X.Opens // V U }

The open sets of an open subscheme corresponds to the open sets containing in the subset.

Equations
@[simp]
theorem AlgebraicGeometry.coe_opensRestrict_apply_coe {X : Scheme} (U : X.Opens) (a✝ : (↑U).Opens) :
((opensRestrict U) a✝) = (fun (a : (↑U).toPresheafedSpace) => a) '' a✝
@[deprecated AlgebraicGeometry.Scheme.map_basicOpen (since := "2024-10-23")]

Alias of AlgebraicGeometry.Scheme.map_basicOpen.

noncomputable def AlgebraicGeometry.Scheme.homOfLE (X : Scheme) {U V : X.Opens} (e : U V) :
U V

If U ≤ V, then U is also a subscheme of V.

Equations
@[simp]
theorem AlgebraicGeometry.Scheme.homOfLE_homOfLE (X : Scheme) {U V W : X.Opens} (e₁ : U V) (e₂ : V W) :
@[simp]
theorem AlgebraicGeometry.Scheme.homOfLE_apply {X : Scheme} {U V : X.Opens} (e : U V) (x : U) :
@[simp]
theorem AlgebraicGeometry.Scheme.homOfLE_app {X : Scheme} {U V : X.Opens} (e : U V) (W : (↑V).Opens) :

The functor taking open subsets of X to open subschemes of X.

Equations
@[deprecated AlgebraicGeometry.Scheme.homOfLE_ι (since := "2024-10-20")]

Alias of AlgebraicGeometry.Scheme.homOfLE_ι.

@[deprecated AlgebraicGeometry.Scheme.homOfLE_ι_assoc (since := "2024-10-20")]

Alias of AlgebraicGeometry.Scheme.homOfLE_ι_assoc.

@[deprecated AlgebraicGeometry.Scheme.homOfLE_base (since := "2024-10-20")]

Alias of AlgebraicGeometry.Scheme.homOfLE_base.

@[deprecated AlgebraicGeometry.Scheme.ι_image_homOfLE_le_ι_image (since := "2024-10-20")]

Alias of AlgebraicGeometry.Scheme.ι_image_homOfLE_le_ι_image.

@[deprecated AlgebraicGeometry.Scheme.homOfLE_app (since := "2024-10-20")]

Alias of AlgebraicGeometry.Scheme.homOfLE_app.

The functor that restricts to open subschemes and then takes global section is isomorphic to the structure sheaf.

Equations

X ∣_ U ∣_ V is isomorphic to X ∣_ V ∣_ U

Equations
  • One or more equations did not get rendered due to their size.
noncomputable def AlgebraicGeometry.Scheme.Hom.isoImage {X Y : Scheme} (f : X.Hom Y) [IsOpenImmersion f] (U : X.Opens) :
U (f.opensFunctor.obj U)

If f : X ⟶ Y is an open immersion, then for any U : X.Opens, we have the isomorphism U ≅ f ''ᵁ U.

Equations
@[deprecated AlgebraicGeometry.Scheme.Hom.isoImage (since := "2024-10-20")]

Alias of AlgebraicGeometry.Scheme.Hom.isoImage.


If f : X ⟶ Y is an open immersion, then for any U : X.Opens, we have the isomorphism U ≅ f ''ᵁ U.

Equations
@[deprecated AlgebraicGeometry.Scheme.Hom.isoImage_hom_ι (since := "2024-10-20")]

Alias of AlgebraicGeometry.Scheme.Hom.isoImage_hom_ι.

(⊤ : X.Opens) as a scheme is isomorphic to X.

Equations
noncomputable def AlgebraicGeometry.Scheme.isoOfEq (X : Scheme) {U V : X.Opens} (e : U = V) :
U V

If U = V, then X ∣_ U is isomorphic to X ∣_ V.

Equations
@[deprecated AlgebraicGeometry.Scheme.isoOfEq (since := "2024-10-20")]
def AlgebraicGeometry.Scheme.restrictIsoOfEq (X : Scheme) {U V : X.Opens} (e : U = V) :
U V

Alias of AlgebraicGeometry.Scheme.isoOfEq.


If U = V, then X ∣_ U is isomorphic to X ∣_ V.

Equations
@[deprecated AlgebraicGeometry.Scheme.Hom.preimageIso (since := "2024-10-20")]

Alias of AlgebraicGeometry.Scheme.Hom.preimageIso.


The restriction of an isomorphism onto an open set.

Equations
noncomputable def AlgebraicGeometry.Scheme.Opens.isoOfLE {X : Scheme} {U V : X.Opens} (hUV : U V) :

If U ≤ V are opens of X, the restriction of U to V is isomorphic to U.

Equations

The restriction of a morphism X ⟶ Y onto X |_{f ⁻¹ U} ⟶ Y |_ U.

Equations

the notation for restricting a morphism of scheme to an open subset of the target scheme

Equations
  • One or more equations did not get rendered due to their size.
theorem AlgebraicGeometry.isPullback_opens_inf_le {X : Scheme} {U V W : X.Opens} (hU : U W) (hV : V W) :

Restricting a morphism onto the image of an open immersion is isomorphic to the base change along the immersion.

Equations
  • One or more equations did not get rendered due to their size.

The restrictions onto two equal open sets are isomorphic. This currently has bad defeqs when unfolded, but it should not matter for now. Replace this definition if better defeqs are needed.

Equations

Restricting a morphism twice is isomorphic to one restriction.

Equations
  • One or more equations did not get rendered due to their size.

Restricting a morphism twice onto a basic open set is isomorphic to one restriction.

Equations
  • One or more equations did not get rendered due to their size.

The stalk map of a restriction of a morphism is isomorphic to the stalk map of the original map.

Equations
  • One or more equations did not get rendered due to their size.
def AlgebraicGeometry.Scheme.Hom.resLE {X Y : Scheme} (f : X.Hom Y) (U : Y.Opens) (V : X.Opens) (e : V (TopologicalSpace.Opens.map f.base).obj U) :
V U

The restriction of a morphism f : X ⟶ Y to open sets on the source and target.

Equations
@[simp]
theorem AlgebraicGeometry.Scheme.Hom.map_resLE {X Y : Scheme} (f : X Y) {U : Y.Opens} {V V' : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (i : V' V) :
@[simp]
theorem AlgebraicGeometry.Scheme.Hom.resLE_map {X Y : Scheme} (f : X Y) {U U' : Y.Opens} {V : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (i : U U') :
theorem AlgebraicGeometry.Scheme.Hom.resLE_congr {X Y : Scheme} (f : X Y) {U U' : Y.Opens} {V V' : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (e₁ : U = U') (e₂ : V = V') (P : CategoryTheory.MorphismProperty Scheme) :
P (resLE f U V e) P (resLE f U' V' )
theorem AlgebraicGeometry.Scheme.Hom.resLE_appLE {X Y : Scheme} (f : X Y) {U : Y.Opens} {V : X.Opens} (e : V (TopologicalSpace.Opens.map f.base).obj U) (O : (↑U).Opens) (W : (↑V).Opens) (e' : W (TopologicalSpace.Opens.map (resLE f U V e).base).obj O) :
appLE (resLE f U V e) O W e' = appLE f ((opensFunctor U.ι).obj O) ((opensFunctor V.ι).obj W)

The stalk map of f.resLE U V at x : V is is the stalk map of f at x.

Equations
  • One or more equations did not get rendered due to their size.
noncomputable def AlgebraicGeometry.Scheme.OpenCover.restrict {X : Scheme} (𝒰 : X.OpenCover) (U : X.Opens) :
(↑U).OpenCover

The restriction of an open cover to an open subset.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem AlgebraicGeometry.Scheme.OpenCover.restrict_obj {X : Scheme} (𝒰 : X.OpenCover) (U : X.Opens) (x✝ : 𝒰.J) :
(𝒰.restrict U).obj x✝ = ((TopologicalSpace.Opens.map (𝒰.map x✝).base).obj U)
@[simp]
theorem AlgebraicGeometry.Scheme.OpenCover.restrict_map {X : Scheme} (𝒰 : X.OpenCover) (U : X.Opens) (x✝ : 𝒰.J) :
(𝒰.restrict U).map x✝ = 𝒰.map x✝ ∣_ U
@[simp]
theorem AlgebraicGeometry.Scheme.OpenCover.restrict_J {X : Scheme} (𝒰 : X.OpenCover) (U : X.Opens) :
(𝒰.restrict U).J = 𝒰.J