The exterior powers as functors on the category of modules #
In this file, given M : ModuleCat R
and n : ℕ
, we define M.exteriorPower n : ModuleCat R
,
and this extends to a functor ModuleCat.exteriorPower.functor : ModuleCat R ⥤ ModuleCat R
.
The exterior power of an object in ModuleCat R
.
Equations
- M.exteriorPower n = ModuleCat.of R ↥(⋀[R]^n ↑M)
Instances For
instance
ModuleCat.instFunLikeAlternatingMapForallFinCarrier
{R : Type u}
[CommRing R]
(M : ModuleCat R)
(N : ModuleCat R)
(n : ℕ)
:
FunLike (M.AlternatingMap N n) (Fin n → ↑M) ↑N
Equations
- M.instFunLikeAlternatingMapForallFinCarrier N n = inferInstanceAs (FunLike (↑M [⋀^Fin n]→ₗ[R] ↑N) (Fin n → ↑M) ↑N)
def
ModuleCat.AlternatingMap.postcomp
{R : Type u}
[CommRing R]
{M : ModuleCat R}
{N : ModuleCat R}
{n : ℕ}
(φ : M.AlternatingMap N n)
{N' : ModuleCat R}
(g : N ⟶ N')
:
M.AlternatingMap N' n
The postcomposition of an alternating map by a linear map.
Equations
- φ.postcomp g = (ModuleCat.Hom.hom g).compAlternatingMap φ
Instances For
@[simp]
theorem
ModuleCat.AlternatingMap.postcomp_apply
{R : Type u}
[CommRing R]
{M : ModuleCat R}
{N : ModuleCat R}
{n : ℕ}
(φ : M.AlternatingMap N n)
{N' : ModuleCat R}
(g : N ⟶ N')
(x : Fin n → ↑M)
:
def
ModuleCat.exteriorPower.mk
{R : Type u}
[CommRing R]
{M : ModuleCat R}
{n : ℕ}
:
M.AlternatingMap (M.exteriorPower n) n
Constructor for elements in M.exteriorPower n
when M
is an object of ModuleCat R
and n : ℕ
.
Equations
Instances For
noncomputable def
ModuleCat.exteriorPower.desc
{R : Type u}
[CommRing R]
{M : ModuleCat R}
{n : ℕ}
{N : ModuleCat R}
(φ : M.AlternatingMap N n)
:
The morphism M.exteriorPower n ⟶ N
induced by an alternating map.
Equations
Instances For
@[simp]
theorem
ModuleCat.exteriorPower.desc_mk
{R : Type u}
[CommRing R]
{M : ModuleCat R}
{n : ℕ}
{N : ModuleCat R}
(φ : M.AlternatingMap N n)
(x : Fin n → ↑M)
:
noncomputable def
ModuleCat.exteriorPower.map
{R : Type u}
[CommRing R]
{M N : ModuleCat R}
(f : M ⟶ N)
(n : ℕ)
:
The morphism M.exteriorPower n ⟶ N.exteriorPower n
induced by a morphism M ⟶ N
in ModuleCat R
.
Equations
Instances For
@[simp]
theorem
ModuleCat.exteriorPower.map_mk
{R : Type u}
[CommRing R]
{M N : ModuleCat R}
(f : M ⟶ N)
{n : ℕ}
(x : Fin n → ↑M)
:
(CategoryTheory.ConcreteCategory.hom (map f n)) (mk x) = mk (⇑(CategoryTheory.ConcreteCategory.hom f) ∘ x)
noncomputable def
ModuleCat.exteriorPower.functor
(R : Type u)
[CommRing R]
(n : ℕ)
:
CategoryTheory.Functor (ModuleCat R) (ModuleCat R)
The functor ModuleCat R ⥤ ModuleCat R
which sends a module to its
n
th exterior power.
Equations
- One or more equations did not get rendered due to their size.