Documentation

Mathlib.Algebra.Algebra.Subalgebra.Pi

Products of subalgebras #

In this file we define the product of subalgebras as a subalgebra of the product algebra.

Main definitions #

def Subalgebra.pi {ι : Type u_1} {R : Type u_2} {S : ιType u_3} [CommSemiring R] [(i : ι) → Semiring (S i)] [(i : ι) → Algebra R (S i)] (s : Set ι) (t : (i : ι) → Subalgebra R (S i)) :
Subalgebra R ((i : ι) → S i)

The product of subalgebras as a subalgebra.

Equations
Instances For
    @[simp]
    theorem Subalgebra.coe_pi {ι : Type u_1} {R : Type u_2} {S : ιType u_3} [CommSemiring R] [(i : ι) → Semiring (S i)] [(i : ι) → Algebra R (S i)] (s : Set ι) (t : (i : ι) → Subalgebra R (S i)) :
    (pi s t) = (Submodule.pi s fun (i : ι) => toSubmodule (t i)).carrier
    @[simp]
    theorem Subalgebra.pi_toSubsemiring {ι : Type u_1} {R : Type u_2} {S : ιType u_3} [CommSemiring R] [(i : ι) → Semiring (S i)] [(i : ι) → Algebra R (S i)] (s : Set ι) (t : (i : ι) → Subalgebra R (S i)) :
    (pi s t).toSubsemiring = { carrier := (Submodule.pi s fun (i : ι) => toSubmodule (t i)).carrier, mul_mem' := , one_mem' := , add_mem' := , zero_mem' := }
    @[simp]
    theorem Subalgebra.mem_pi {ι : Type u_1} {R : Type u_2} {S : ιType u_3} [CommSemiring R] [(i : ι) → Semiring (S i)] [(i : ι) → Algebra R (S i)] {s : Set ι} {t : (i : ι) → Subalgebra R (S i)} {x : (i : ι) → S i} :
    x pi s t is, x i t i
    @[simp]
    theorem Subalgebra.pi_toSubmodule {ι : Type u_1} {R : Type u_2} {S : ιType u_3} [CommSemiring R] [(i : ι) → Semiring (S i)] [(i : ι) → Algebra R (S i)] {s : Set ι} {t : (i : ι) → Subalgebra R (S i)} :
    toSubmodule (pi s t) = Submodule.pi s fun (i : ι) => toSubmodule (t i)
    @[simp]
    theorem Subalgebra.pi_top {ι : Type u_1} {R : Type u_2} {S : ιType u_3} [CommSemiring R] [(i : ι) → Semiring (S i)] [(i : ι) → Algebra R (S i)] (s : Set ι) :
    (pi s fun (i : ι) => ) =
    theorem Subalgebra.pi_mono {ι : Type u_1} {R : Type u_2} {S : ιType u_3} [CommSemiring R] [(i : ι) → Semiring (S i)] [(i : ι) → Algebra R (S i)] {s : Set ι} {t₁ t₂ : (i : ι) → Subalgebra R (S i)} (h : is, t₁ i t₂ i) :
    pi s t₁ pi s t₂