Documentation

ClassificationOfSubgroups.Ch4_PGLIsoPSLOverAlgClosedField.ProjectiveGeneralLinearGroup

def Matrix.transvection.toSL {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {i j : n} (hij : i j) (c : R) :
Equations
Instances For
    def GeneralLinearGroup.scalar {R : Type v} [CommRing R] (n : Type u_1) [DecidableEq n] [Fintype n] (r : Rˣ) :
    GL n R
    Equations
    Instances For
      theorem GeneralLinearGroup.coe_scalar_matrix {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (r : Rˣ) :
      (Matrix.scalar n) r = (scalar n r)

      The scalar matrix r • 1 belongs to GL n R if and only if r is a unit

      @[reducible, inline]
      abbrev ProjectiveGeneralLinearGroup (n : Type u) [DecidableEq n] [Fintype n] (R : Type v) [CommRing R] :
      Type (max (max u v) v u)

      A projective general linear group is the quotient of a special linear group by its center.

      Equations
      Instances For
        @[reducible, inline]
        abbrev PGL (n : Type u_1) [DecidableEq n] [Fintype n] (R : Type u_2) [CommRing R] :
        Type (max (max u_1 u_2) u_2 u_1)

        PGL n R is the projective special linear group (GL n R)/ Z(GL(n R)).

        Equations
        Instances For
          @[reducible, inline]
          abbrev ProjectiveSpecialLinearGroup (n : Type u) [DecidableEq n] [Fintype n] (R : Type v) [CommRing R] :
          Type (max (max u v) v u)

          A projective special linear group is the quotient of a special linear group by its center.

          Equations
          Instances For
            @[reducible, inline]
            abbrev PSL (n : Type u_1) [DecidableEq n] [Fintype n] (R : Type u_2) [CommRing R] :
            Type (max (max u_1 u_2) u_2 u_1)

            PSL(n, R) is the projective special linear group SL(n, R)/Z(SL(n, R)).

            Equations
            Instances For
              def GL_monoidHom_PGL (n : Type u_1) [Fintype n] [DecidableEq n] (R : Type u_2) [CommRing R] :
              GL n R →* PGL n R
              Equations
              Instances For
                Equations
                Instances For
                  theorem coe (R : Type v) [CommRing R] {n : Type u_1} [Fintype n] [DecidableEq n] (x : Matrix.SpecialLinearGroup n R) :
                  theorem scalar_eq_smul_one (n : Type u_1) [Fintype n] [DecidableEq n] (R : Type u_2) [CommRing R] (r : R) :
                  (Matrix.scalar n) r = r 1
                  theorem exists_SL_eq_scaled_GL_of_IsAlgClosed {n : Type u_1} {F : Type u_2} [hn₁ : Fintype n] [DecidableEq n] [Field F] [IsAlgClosed F] (G : GL n F) :
                  theorem lift_scalar_matrix_eq_one {n : Type u_1} {F : Type u_2} [hn₁ : Fintype n] [DecidableEq n] [Field F] [IsAlgClosed F] (c : Fˣ) :
                  (GL_monoidHom_PGL n F) (c 1) = 1
                  noncomputable def PGL_iso_PSL (n : Type u_1) (F : Type u_2) [Fintype n] [DecidableEq n] [Field F] [IsAlgClosed F] :
                  PSL n F ≃* PGL n F
                  Equations
                  Instances For