Documentation

ClassificationOfSubgroups.Ch4_PGLIsoPSLOverAlgClosedField.ProjectiveGeneralLinearGroup

def Matrix.transvection.toSL {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] {i j : n} (hij : i j) (c : R) :
Equations
def GeneralLinearGroup.scalar {R : Type v} [CommRing R] (n : Type u_1) [DecidableEq n] [Fintype n] (r : Rˣ) :
GL n R
Equations
theorem GeneralLinearGroup.coe_scalar_matrix {n : Type u} [DecidableEq n] [Fintype n] {R : Type v} [CommRing R] (r : Rˣ) :
(Matrix.scalar n) r = (scalar n r)

The scalar matrix r • 1 belongs to GL n R if and only if r is a unit

@[reducible, inline]
abbrev ProjectiveGeneralLinearGroup (n : Type u) [DecidableEq n] [Fintype n] (R : Type v) [CommRing R] :
Type (max (max u v) v u)

A projective general linear group is the quotient of a special linear group by its center.

Equations
Instances For
@[reducible, inline]
abbrev PGL (n : Type u_1) [DecidableEq n] [Fintype n] (R : Type u_2) [CommRing R] :
Type (max (max u_1 u_2) u_2 u_1)

PGL n R is the projective special linear group (GL n R)/ Z(GL(n R)).

Equations
@[reducible, inline]
abbrev ProjectiveSpecialLinearGroup (n : Type u) [DecidableEq n] [Fintype n] (R : Type v) [CommRing R] :
Type (max (max u v) v u)

A projective special linear group is the quotient of a special linear group by its center.

Equations
@[reducible, inline]
abbrev PSL (n : Type u_1) [DecidableEq n] [Fintype n] (R : Type u_2) [CommRing R] :
Type (max (max u_1 u_2) u_2 u_1)

PSL(n, R) is the projective special linear group SL(n, R)/Z(SL(n, R)).

Equations
def GL_monoidHom_PGL (n : Type u_1) [Fintype n] [DecidableEq n] (R : Type u_2) [CommRing R] :
GL n R →* PGL n R
Equations
theorem coe (R : Type v) [CommRing R] {n : Type u_1} [Fintype n] [DecidableEq n] (x : Matrix.SpecialLinearGroup n R) :
theorem scalar_eq_smul_one (n : Type u_1) [Fintype n] [DecidableEq n] (R : Type u_2) [CommRing R] (r : R) :
(Matrix.scalar n) r = r 1
theorem exists_SL_eq_scaled_GL_of_IsAlgClosed {n : Type u_1} {F : Type u_2} [hn₁ : Fintype n] [DecidableEq n] [Field F] [IsAlgClosed F] (G : GL n F) :
theorem lift_scalar_matrix_eq_one {n : Type u_1} {F : Type u_2} [hn₁ : Fintype n] [DecidableEq n] [Field F] [IsAlgClosed F] (c : Fˣ) :
(GL_monoidHom_PGL n F) (c 1) = 1
noncomputable def PGL_iso_PSL (n : Type u_1) (F : Type u_2) [Fintype n] [DecidableEq n] [Field F] [IsAlgClosed F] :
PSL n F ≃* PGL n F
Equations