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Chapter 1

Abstract and
Acknowledgements

I (Alex Brodbelt) am deeply grateful to Christopher Butler for providing the TeX code so I
could add to his already incredible exposition of Dickson’s classification of finite subgroups
of SL2(𝐹) over an algebraically closed field.

I feel obliged to credit Christopher where it is due.

Popular Science Summary
In order to explain what this paper is about, it is necessary to first define a few of

the mathematical concepts which it concerns. A group is a set of objects, called elements,
together with a rule, called an operation, which tells us how two elements combine with
each other to make a third. Furthermore, to be considered a group it must also satisfy 4
conditions, called axioms. One of which is that the group must be closed under it’s opera-
tion. This means that whenever any two elements in the group are combined, the resulting
element is also part of the group. The remaining axioms require that the group must also
be associative, have an identity element and each element must have an inverse. The way
in which the elements in a group act with each other is called the group’s structure. If
2 groups have the same number of elements and share the same structure, then they are
regarded as being isomorphic to each other, which essentially means that they equivalent.
Many everyday things can be regarded as groups, such as the symmetries of geometrical
objects, or the number systems we use.

The set of 2 x 2 matrices whose determinant is equal to 1, together with the operation
of ordinary matrix multiplication, forms a group called the special linear group. This is a
group because the product of 2 matrices has a determinant equal to the product of the de-
terminants of the 2 matrices, so since 1 x 1 = 1, this new element also belongs to the group,
hence the axiom of being closed is satisfied. Furthermore, it is crucial that the entries in the
matrices are taken from a specified ring or field. Rings and fields are, like groups, abstract
mathematical objects, albeit they satisy even more axioms than groups do. Crucially, rings
and fields have both an additive and a multiplicative identity.

This paper focuses on SL2(𝐹), which is the two-dimensional special linear group whose
entries are taken from an algebraically closed field. Algebraically closed fields are infinite
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in size, which means that the resulting special linear group is also infinite. A subgroup of
a group is simply a group with the added requirement that each of it’s elements must also
belong to the original group. Thus a finite subgroup of SL2(𝐹) is any finite set of elements
belonging to this infinite group SL2(𝐹), which satisfy the 4 axioms of being a group.

This paper classifies all the possible structures which a finite subgroup of SL2(𝐹) could
have. The result has implications within the study of finite simple groups. This classifi-
cation was first done by American mathematician Leonard Eugene Dickson in 1901. The
purpose of this reformulation is to make it accessible to a wider audience by providing a
more detailed explanation at the various stages of the proof.
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Abstract
This paper is a reformulation of Leonard Dickson’s complete classification of the finite

subgroups of the two-dimensional special linear group over an arbitrary algebraically closed
field, SL2(𝐹). The approach is to construct a class equation of the conjugacy classes of
maximal abelian subgroups of an arbitrary finite subgroup of SL2(𝐹). In turn, this leads to
only 10 possible classes of structures of this subgroup up to isomorphism.
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Chapter 2

Introduction

2.1 What is the formalization of mathematics?
Formalization of mathematics is the art of teaching a computer what a piece of mathematics
means.

That is, it is the process of carefully writing down a mathematical statement typically in
first order logic or higher order logic and then scrutinously justifying each step of the proof
to a computer program that checks the validity of every step of the reasoning.

Typically one formalizes mathematics with the help of a proof assistant or interactive
theorem prover, a piece of software which enables a human to write down mathematics and
have the software verify the claims.

There exist many proof assistants, such examples are Lean, Isabelle, Coq, Metamath,
etc.

For this project I have opted to use Lean due to its rapid growing mathematics library
and its dependent type theory. I shall explain in more detail these last two reasons, but first
I will comment on what Lean is.

What is Lean?

Lean is both a functional programming language and an interactive theorem prover that is
being developed at Microsoft research and AWS by Leonardo de Moura and his team. It
has been designed for both use in cutting-edge mathematics and the verification of software
which is often essential to safety critical systems where correctness is of extreme TODO:

- Brief explanation of type theory and curry-howard isomorphism.
- Example of formal proof and comparison with informal proof.

2.2 Fermat’s Last Theorem
TODO:

-History of Fermat’s Equation
-Problem statements
-Developments in number theory that lead to the resolution of the conjecture.
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2.3 Formalizing Fermat’s Last Theorem
Following the sequence of success stories ranging from the Liquid Tensor Experiment to the
formalization of the Polynomial Freiman-Rusza conjecture.

Prof. Kevin Buzzard from Imperial College London has received a five-year grant that
will allow him to lead the formalization of Fermat’s Last Theorem. This grant kicked in in
October of 2024.

At the time of writing, since October of 2024, a digital blueprint has been set up to
manage the project.

Alongside other infrastructure like the project dashboard, mathematicians around the
world can claim tasks that are set by Prof. Kevin Buzzard and if in return a task is returned
with a ”sorry” free proof then one can claim the glory of having completed the task.

TODO:
- Current goal of the formalization
- Explain somewhat the modern approach and the highly sought after Modularity Lifting

Theorem.
- My task: Classification of finite subgroups of PGL2(�̄�𝑝)

2.4 Classification of finite subgroups of the PGL2(�̄�𝑝)
TODO:

-Why are the finite subgroups of PGL2(�̄�𝑝) relevant to number theory: i.e: Automorphic
forms, Galois representations, etc.

The primary concern of this project is to formalise Theorem 2.47 of [DTT] which states:

1. If 𝐻 is finite subgroup of PGL2(ℂ) then 𝐻 is isomorphic to one of the following groups:
the cyclic group 𝐶𝑛 of order 𝑛 (𝑛 ∈ ℤ>0), the dihedral group 𝐷2𝑛 of order 2𝑛 (𝑛 ∈ ℤ>1),
𝐴4, 𝑆4 or 𝐴5.

2. If 𝐻 is a finite subgroup of PGL2(�̄�𝑝) then one of the following holds:

(a) 𝐻 is conjugate to a subgroup of the upper triangular matrices;
(b) 𝐻 is conjugate to PGL2(𝔽ℓ𝑟) and PSL2(𝔽ℓ𝑟) for some 𝑟 ∈ ℤ>0;
(c) 𝐻 is isomorphic to 𝐴4, 𝑆4, 𝐴5 or the dihedral group 𝐷2𝑟 of order 2𝑟 for some

𝑟 ∈ ℤ>1 not divisible by ℓ
Where ℓ is assumed to be an odd prime.

By definition the Projective General Linear Group is:

PGL𝑛(𝐹) = GL𝑛(𝐹)/(𝑍(GL𝑛(𝐹))) = GL𝑛(𝐹)/(𝐹 ×𝐼) (2.1)
Similarly, the Projective Special Linear Group is:

PSL𝑛(𝐹) = SL𝑛(𝐹)/(𝑍(SL𝑛(𝐹))) = SL𝑛(𝐹)/(⟨−𝐼⟩) (2.2)
Given we are working over an algebraically closed field 𝐹 , it turns out that for any 𝑛 ∈ ℕ,

PGL𝑛(𝐹) is isomorphic to PSL𝑛(𝐹).
This isomorphism will be crucial as it will allow us to focus on classifying finite subgroups

of 𝑆𝐿2(𝐹) to classify the finite subgroups of PGL2(𝐹).
The goal of the next chapter is to prove and formalize this result.
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Chapter 3

Preliminaries

This section briefly outlines some standard group theory results which perhaps may not
have been covered in a first course in Group Theory. Since they are not the main focus
of this paper, most of the proofs have been omitted. A more advanced reader may choose
to skip this first chapter, using it only for reference purposes as and when the results are
subsequently cited.

3.1 Some Elementary Theorems
The following theorems are all well-known fundamental results in group theory. If the reader
is interested in the proofs, they can be found in Hungerford [3].

Theorem 3.1. Let 𝐺 be a finite group. Then the order of any subgroup of 𝐺 divides the
order of 𝐺.

Theorem 3.2. Let 𝜙 ∶ 𝐺 → 𝐺′ be a homomorphism of groups. Then,

𝐺/𝐾𝑒𝑟 𝜙 ≅ 𝐼𝑚 𝜙.

Hence, in particular, if 𝜙 is surjective then,

𝐺/𝐾𝑒𝑟 𝜙 ≅ 𝐺′.

Theorem 3.3. Let 𝐻 and 𝑁 be subgroups of 𝐺, and 𝑁 ⊲ 𝐺. Then,

𝐻/𝐻 ∩ 𝑁 ≅ 𝐻𝑁/𝑁.

Theorem 3.4. Let 𝐻 and 𝐾 be normal subgroups of 𝐺 and 𝐾 ⊂ 𝐻. Then 𝐻/𝐾 is a
normal subgroup of 𝐺/𝐾 and,

(𝐺/𝐾)/(𝐻/𝐾) ≅ 𝐺/𝐻.

Theorem 3.5. If the order of a finite group 𝐺 is divisible by a prime number 𝑝, then 𝐺
has an element of order 𝑝.
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3.2 Sylow Theory
In 1872, Norweigian mathematician Peter Ludwig Sylow published his theorems regarding
the number of subgroups of a fixed order that a given finite group contains. Today these are
collectively known as the Sylow Theorems and play a vital role in determining the structure
of finite groups. I will use the results of these theorems several times throughout this paper
and I state them here without proof. If the reader would like to read further, the proofs
can be found in most introductory texts on group theory, such as Bhattacharya [2], except
Corollary 3.11 which can be found in Alperin and Bell [1, p.64] .

Definition 3.6. Let 𝐺 be a finite group and 𝑝 a prime, a Sylow 𝑝𝑝𝑝-subgroup of 𝐺 is a
subgroup of order 𝑝𝑟, where 𝑝𝑟+1 does not divide the order of 𝐺.

Let 𝑝 be a prime. A group 𝐺 is called a 𝑝𝑝𝑝-group if the order of each of it’s elements
is a power of 𝑝. Similarly, a subgroup 𝐻 of 𝐺 is called a 𝑝𝑝𝑝-subgroup if the order of each
of it’s elements is a power of 𝑝.

In each of the following results, 𝐺 is a finite group of order 𝑝𝑟𝑚, where 𝑝 is a prime
which does not divide 𝑚.

Theorem 3.7. First Sylow Theorem. If 𝑝𝑘 divides |𝐺|, then 𝐺 has a subgroup of order 𝑝𝑘.

Theorem 3.8. All Sylow 𝑝-subgroups of G are conjugate.

Theorem 3.9. The number of Sylow 𝑝-subgroups 𝑛𝑝 divides 𝑚 and satisfies 𝑛𝑝 ≡ 1(mod
𝑝).

Corollary 3.10. A Sylow 𝑝-subgroup of 𝐺 is unique if and only if it is normal.

Corollary 3.11. Any 𝑝-subgroup of 𝐺 is contained in a Sylow 𝑝-subgroup.

3.3 Group Action
Definition 3.12. Let 𝐺 be a group and 𝑋 be a set. Then 𝐺 is said to act on 𝑋 if there is
a map 𝜙 ∶ 𝐺 × 𝑋 → 𝑋, with 𝜙(𝑎, 𝑥) denoted by 𝑎∗𝑥, such that for 𝑎, 𝑏 ∈ 𝐺 and 𝑥 ∈ 𝑋, the
following 2 properties hold:

(𝑖) 𝑎 ∗(𝑏 ∗𝑥) = (𝑎𝑏)∗𝑥,
(𝑖𝑖) 𝐼𝐺

∗𝑥 = 𝑥.

The map 𝜙 is called the group action of 𝐺 on 𝑋.

Definition 3.13. Let 𝐺 be a group acting on a set 𝑋 and let 𝑥 ∈ 𝑋. Then the set,

𝑆𝑡𝑎𝑏(𝑥) = {𝑔 ∈ 𝐺 ∶ 𝑔𝑥 = 𝑥},
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is called the stabiliser of 𝑥 in 𝐺. Each 𝑔 in 𝑆𝐺(𝑥) is said to fix 𝑥, whilst 𝑥 is said to be a
fixed point of each 𝑔 in 𝑆𝐺(𝑥). Also, the set,

Orb(𝑥) = {𝑔𝑥 ∶ 𝑔 ∈ 𝐺},

is called the orbit of 𝑥 in 𝐺.

The orbit and the stabiliser of an element are closely related. The following theorem is
a consequence of this relationship and it will be useful throughout this paper.

Theorem 3.14. Let 𝐺 be a finite group acting on a set 𝑋. Then for each 𝑥 ∈ 𝑋,

|𝐺| = |Orb(𝑥)||Stab(𝑥)|.

The following standard theorem will all play a vital roll later on.

Theorem 3.15. Let 𝐺 be a group and 𝐻 a subgroup of 𝐺 of finite index 𝑛. Then there is
a homomorphism 𝜙 ∶ 𝐺 ⟶ 𝑆𝑛 such that,

𝑘𝑒𝑟(𝜙) = ⋂
𝑥∈𝐺

𝑥𝐻𝑥−1.

Proof. See [2, p.110] for proof.

3.4 Conjugation
Definition 3.16. Let 𝐺 be a group and 𝑎 an element of 𝐺. An element 𝑏 ∈ 𝐺 is said to be
conjugate to 𝑎 if 𝑏 = 𝑥𝑎𝑥−1 for some 𝑥 ∈ 𝐺.

Let 𝐻1 be a proper subgroup of 𝐺 and fix 𝑥 ∈ 𝐺 ∖ 𝐻1. The set 𝐻2 = {𝑔 ∈ 𝐺 ∶ 𝑔 = 𝑥ℎ1𝑥−1,
∀ℎ1 ∈ 𝐻1} is said to be a conjugate subgroup of 𝐻1. We write 𝐻2 = 𝑥𝐻1𝑥−1. It is trivial
to show that 𝐻2 is a subgroup of 𝐺.

Conjugation plays an important roll thoughout the paper, in particularly the following
properties about conjugate elements and subgroups.

Proposition 3.17. Let 𝑎, 𝑏 be conjugate elements of a group 𝐺 and 𝐴, 𝐵 be conjugate
subgroups of 𝐺. Then the following properites hold:

(i) If either 𝑎 or 𝑏 has finite order, then both 𝑎 and 𝑏 have the same order.

(ii) 𝐴 ≅ 𝐵.

Proof. (i) Since 𝑎 and 𝑏 are conjugate elements in 𝐺, 𝑏 = 𝑥𝑎𝑥−1 for some 𝑥 ∈ 𝐺. Suppose
that 𝑏 has finite order and 𝑏𝑘 = 𝐼𝐺 for some 𝑘 ∈ ℤ+,

𝐼𝐺 = 𝑏𝑘 = (𝑥𝑎𝑥−1)𝑘 = 𝑥𝑎𝑘𝑥−1 ⇒ 𝑎𝑘 = 𝐼𝐺.
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Alternatively suppose that 𝑎 has finite order and 𝑎𝑘 = 𝐼𝐺 for some 𝑘 ∈ ℤ+,

𝑎𝑘 = 𝐼𝐺 ⇒ 𝐼𝐺 = 𝑥𝑎𝑘𝑥−1 = (𝑥𝑎𝑥−1)𝑘 = 𝑏𝑘.
Thus 𝑎𝑘 = 𝐼𝐺 ⟺ 𝑏𝑘 = 𝐼𝐺. Thus 𝑎 and 𝑏 have the same order.

(ii) Since 𝐴 and 𝐵 are conjugate, there exists some 𝑥 ∈ 𝐺 such that 𝐵 = 𝑥𝐴𝑥−1. De-
fine the map 𝜙 by,

𝜙 ∶ 𝐴 ⟶ 𝑥𝐴𝑥−1,
𝑎1 ⟼ 𝑥𝑎1𝑥−1. (∀ 𝑎1 ∈ 𝐴)

We show that 𝜙 is a homomorphism between 𝐴 and 𝐵 = 𝑥𝐴𝑥−1.

𝜙(𝑎1𝑎2) = 𝑥𝑎1𝑎2𝑥−1 = (𝑥𝑎1𝑥−1)(𝑥𝑎2𝑥−1) = 𝜙(𝑎1)𝜙(𝑎2).

Now consider an arbitrary 𝑘 ∈ 𝑘𝑒𝑟(𝜙).

𝑘 ∈ 𝑘𝑒𝑟(𝜙) ⟺ 𝜙(𝑘) = 𝐼𝐺 ⟺ 𝑥𝑘𝑥−1 = 𝐼𝐺 ⟺ 𝑘 = 𝐼𝐺.

So 𝑘𝑒𝑟(𝜙) = {𝐼𝐺} which means 𝜙 is injective. Now let 𝑏1 ∈ 𝐵 = 𝑥𝐴𝑥−1. Thus 𝑏1 = 𝑥𝑎1𝑥−1

for some 𝑎1 ∈ 𝐴. Since 𝑎1 ∈ 𝐴, 𝜙(𝑎1) = 𝑥𝑎1𝑥−1 = 𝑏1 and so 𝜙 is surjective. Thus 𝜙 is an
isomorphism and 𝐴 and 𝐵 are isomorphic.

The final part of this proposition is an important result which shows that since conjugate
subgroups are isomorphic, conjugation preserves group structure and properties. In partic-
ular, conjugate subgroups have the same cardinality and if one is abelian or cyclic, then so
is the other.

3.5 Automorphism
Definition 3.18. An automorphism of a group 𝐺 is a isomorphism from 𝐺 onto itself.
The set of all automorphisms of 𝐺 forms a group under composition and is denoted by
𝐴𝑢𝑡(𝐺).

An inner automorphism is an automorphism whereby 𝐺 acts on itself by conjugation.
That is, each 𝑔 ∈ 𝐺 induces a map, 𝑖𝑔 ∶ 𝐺 → 𝐺, where 𝑖𝑔(𝑥) = 𝑔𝑥𝑔−1 for each 𝑥 ∈ 𝐺. The
set of all inner automorphisms is denoted by 𝐼𝑛𝑛(𝐺) and is a normal subgroup of 𝐴𝑢𝑡(𝐺)
(For proof of this see [2, p.104].

3.6 Direct Product
Definition 3.19. If 𝐺1, 𝐺2, ..., 𝐺𝑛 are groups, we define a coordinate operation on the
Cartesian product 𝐺1 × 𝐺2 × ... × 𝐺𝑛 as follows:

(𝑎1, 𝑎2, ..., 𝑎𝑛)(𝑏1, 𝑏2, ..., 𝑏𝑛) = (𝑎1𝑏1, 𝑎2𝑏2, ..., 𝑎𝑛𝑏𝑛),
where 𝑎𝑖, 𝑏𝑖 ∈ 𝐺𝑖. It is easy to verify that 𝐺1 × 𝐺2 × ... × 𝐺𝑛 is a group under this operation.
This group is called the direct product of 𝐺1, 𝐺2, ..., 𝐺𝑛.
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Lemma 3.20. Let 𝐴 and 𝐵 be normal subgroups of 𝐺 with 𝐴∩𝐵 = {𝐼𝐺}. Then 𝐴𝐵 ≅ 𝐴×𝐵.

Proof. First note that the elements of 𝐴 commute with the elements of 𝐵, since ∀ 𝑎 ∈ 𝐴
and 𝑏 ∈ 𝐵,

𝑎𝑏𝑎−1𝑏−1 = 𝑎(𝑏𝑎−1𝑏−1) ∈ 𝐴, (since 𝐴 ⊲ 𝐺)
𝑎𝑏𝑎−1𝑏−1 = (𝑎𝑏𝑎−1)𝑏−1 ∈ 𝐵. (since 𝐵 ⊲ 𝐺)

Therefore 𝑎𝑏𝑎−1𝑏−1 ∈ 𝐴 ∩ 𝐵 = {𝐼𝐺}, and 𝑎𝑏 = 𝑏𝑎.

Define the operation ∗ on 𝐴 × 𝐵 by (𝑎1, 𝑏1) ∗ (𝑎2, 𝑏2) = (𝑎1𝑎2, 𝑏1𝑏2). Now define the map 𝜙
by,

𝜙 ∶ 𝐴 × 𝐵 ⟶ 𝐴𝐵,
(𝑎, 𝑏) ⟼ 𝑎𝑏. (∀ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵)

We show that 𝜙 is a homomorphism between 𝐴 × 𝐵 and 𝐴𝐵.

𝜙((𝑎1, 𝑏1) ∗ (𝑎2, 𝑏2)) = 𝜙(𝑎1𝑎2, 𝑏1𝑏2)
= 𝑎1𝑎2𝑏1𝑏2
= 𝑎1𝑏1𝑎2𝑏2
= 𝜙(𝑎1, 𝑏1)𝜙(𝑎2, 𝑏2).

Thus 𝜙 is a homomorphism and clearly surjective. It remains to show that it is injective.

𝜙(𝑎1, 𝑏1) = 𝜙(𝑎2, 𝑏2),
𝑎1𝑏1 = 𝑎2𝑏2,

𝑎1𝑏1𝑏−1
2 = 𝑎2,

𝑏1𝑏−1
2 = 𝑎−1

1 𝑎2 ∈ 𝐴 ∩ 𝐵.

Since 𝐴 ∩ 𝐵 = {𝐼𝐺}, we have 𝑏1𝑏−1
2 = 𝐼𝐺 = 𝑎−1

1 𝑎2 and so 𝑏1 = 𝑏2, 𝑎1 = 𝑎2 and 𝜙 is
injective. So 𝜙 is an isomorphism and 𝐴𝐵 ≅ 𝐴 × 𝐵.

Lemma 3.21. Let 𝐴 and 𝐵 be subgroups of 𝐺. If 𝐴 ∩ 𝐵 = {𝐼𝐺} and 𝑎𝑏 = 𝑏𝑎 ∀𝑎 ∈ 𝐴,
𝑏 ∈ 𝐵. Then 𝐴𝐵 ≅ 𝐴 × 𝐵.

Proof. Since 𝐴 and 𝐵 commute, the argument outlined in Lemma 3.20 also holds here.
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Chapter 4

Reduction of classification of
finite subgroups of PGL2(�̄�𝑝) to
classification of finite subgroups
of PSL2(�̄�𝑝)

4.1 Over an algebraically closed field PSL𝑛(𝐹) is isomor-
phic to the projective PGL𝑛(𝐹)

When 𝐹 is algebraically closed and char(𝐹) ≠ 2 we can construct an isomorphism between
the projective special linear group and the projective general linear group.

Definition 4.1. Let 𝜑 ∶ SL𝑛(𝑅) → PGL𝑛(𝑅) be the injection of PSL𝑛(𝑅) into PGL𝑛(𝑅)
defined by

𝑆 ↦ 𝑖(𝑆) (𝑅×𝐼)
where 𝑖 ∶ SL𝑛(𝐹) ↪ GL𝑛(𝐹) is the natural injection of the special linear group into the

general linear group.

We prove a useful fact about elements that belong to the center of GL𝑛(𝑅):
Lemma 4.2. Let 𝑅 be a commutative ring, then 𝐺 ∈ 𝐺𝐿𝑛(𝐹) belongs to center of GL𝑛(𝑅),
𝑍(GL𝑛(𝑅)) if and only if 𝐺 = 𝑟 ⋅ 𝐼 where 𝑟 ∈ 𝑅×.

Proof. • Suppose 𝐺 ∈ 𝐺𝐿𝑛(𝐹) belongs to 𝑍(GL𝑛(𝐹)) then for all 𝐻 ∈ GL𝑛(𝐹) we have
that 𝐺𝐻 = 𝐻𝐺. We will find it sufficient to only consider the case where 𝐻 is a
transvection matrices. Let 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, then the transvection matrices are of the
form 𝑇𝑖𝑗 = 𝐼 + 𝐸𝑖𝑗 where 𝐸𝑖𝑗 is the standard basis matrix given by

𝐸𝑖𝑗𝑘𝑙
= {1 if 𝑖 = 𝑘 and 𝑙 = 𝑗

0 otherwise

Given 𝑇𝑖𝑗𝐺 = (𝐼 + 𝐸𝑖𝑗)𝐺 = 𝐺𝑇𝑖𝑗(𝐼 + 𝐸𝑖𝑗), and addition is commutative we can use
the cancellation law to yield that
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𝐸𝑖𝑗𝐺 = 𝐺𝐸𝑖𝑗

But 𝐺 only commutes with 𝐸𝑖𝑗 for all 𝑖 ≠ 𝑗 if 𝐺 = 𝑟 ⋅ 𝐼 for some 𝑟 ∈ 𝑅×.

• Suppose 𝐺 = 𝑟 ⋅ 𝐼 for some 𝑟 ∈ 𝑅× then it is clear that for all 𝐻 ∈ GL𝑛(𝐹) that
𝑟 ⋅ 𝐼𝐻 = 𝑟 ⋅ 𝐻 = 𝐻 ⋅ 𝑟 = 𝐻(𝑟 ⋅ 𝐼)

Lemma 4.3. Let 𝑅 be a non-trivial commutative ring, then 𝑍(SL𝑛(𝑅)) ⊆ ker(𝜑).
Proof. If 𝑆 ∈ 𝑍(SL𝑛(𝑅)) ≤ SL𝑛(𝐹) then 𝑆 = 𝜔𝐼 where 𝜔 is a primitive root of unity.

Because 𝜑 = 𝜋𝑍(GL𝑛(𝐹)) ∘ 𝑖, the kernel of 𝜑 is 𝑖−1(𝑍(GL𝑛(𝐹))), where we recall that
𝑖 ∶ SL𝑛(𝑅) ↪ GL𝑛(𝐹) is the injection of 𝑆𝐿𝑛(𝐹) into GL𝑛(𝐹).

But given 𝑖(𝑆) = 𝑖(𝜔 ⋅ 𝐼) = 𝜔 ⋅ 𝐼 is of the form 𝑟 ⋅ 𝐼 where 𝑟 ∈ 𝑅× by 4.2 it follows that
𝑆 ∈ ker 𝜑, as desired.

Definition 4.4. Given 𝑍(SL𝑛(𝐹)) ker 𝜑 as shown in 4.3, by the universal property there
exists a unique homomorphism �̄� ∶ PSL𝑛(𝐹) → PGL𝑛(𝐹) which is the lift of 𝜑. Where
𝜑 = �̄� ∘ 𝜋𝑍(SL𝑛(𝐹)) and 𝜋𝑍(SL𝑛(𝐹)) ∶ SL𝑛(𝐹) → PSL𝑛(𝐹) is the canonical homomorphism
from the group into its quotient.

Lemma 4.5. The homomorphism �̄� is injective.

Proof. To show �̄� is injective we must show that ker �̄� ≤ ⊥PSL𝑛(𝐹) where ⊥PSL𝑛(𝐹) is the
trivial subgroup of PSL𝑛(𝐹).

Let [𝑆] ∈ PSL𝑛(𝐹) and suppose [𝑆] ∈ ker �̄�. If [𝑆] ∈ ker �̄� then �̄�([𝑆]) = [1]PGL𝑛(𝐹). But
on the other hand, �̄�([𝑆]) = 𝜑(𝑠) and so 𝜑(𝑆) = 1PGL𝑛(𝐹)

and thus 𝑆 ∈ 𝑍(GL𝑛(𝐹)), from 4.2 it follows that 𝑠 = 𝑟 ⋅ 𝐼 for some 𝑟 ∈ 𝑅×. But given
the restriction of 𝑆 ∈ SL𝑛(𝐹) we know that

det(𝑆) = det(𝑟 ⋅ 𝐼) = 𝑟𝑛 = 1 ⟹ 𝑟 is a 𝑛 th root of unity
Therefore, given elements of 𝑍(SL𝑛(𝐹)) are those matrices of the form 𝜔 ⋅ 𝐼 where 𝜔 is

a 𝑛th root of unity, we can conclude that [𝑆] = [1]PSL𝑛(𝐹) and thus ker �̄� ≤ ⊥PSL𝑛(𝐹) as
required.

Which shows that the homomorphism �̄� is injective.

Before we can show that �̄� is surjective we need the following lemma which allows us to
find a suitable representative for an arbitrary element of PGL𝑛(𝐹).
Lemma 4.6. If 𝐹 is an algebraically closed field then for every 𝐺 ∈ GL𝑛(𝐹) there exists a
nonzero constant 𝛼 ∈ 𝐹 × and an element 𝑆 ∈ SL𝑛(𝐹) such that

𝐺 = 𝛼 ⋅ 𝑆

Proof. Let 𝐺 ∈ GL𝑛(𝑅) then define

𝑃(𝑋) ∶= 𝑋𝑛 − det(𝐺)

By assumption 𝐹 is algebraically closed and det(𝐺) ∈ 𝐹 × thus there exists a root 𝛼 ∈ 𝐹 ×

such that

𝛼𝑛 − det(𝐺) = 0 ⟺ 𝛼 = 𝑛√det(𝐺)
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Let 𝑆 = 1
𝛼 ⋅ 𝐺, by construction 𝑆 ∈ SL𝑛(𝐹) as

det(𝑆) = ( 1
𝛼) ⋅ det(𝐺) = 1

det(𝐺) det(𝐺) = 1

Lemma 4.7. The map �̄� is surjective.

Proof. Let 𝐺 (𝐹 ×𝐼) = [𝐺] ∈ PGL𝑛(𝐹), then 𝐺 ∈ GL𝑛(𝐹) we can find a representative of
[𝐺′], that lies within the special linear group. Given elements of the special linear group
are matrices with determinant equal to one, we must scale 𝐺 to a suitable factor to yield a
representative which lies within SL𝑛(𝐹). Suppose det(𝐺) ≠ 1 and let

𝑃(𝑋) ∶= 𝑋𝑛 − det(𝐺) ∈ 𝐹 [𝑋]

By assumption, 𝐹 is algebraically closed so there exists a root 𝛼 ≠ 0 ∈ 𝐹 such that

𝛼𝑛 − det(𝐺) = 0 ⟺ 𝛼𝑛 = det(𝐺)

We can define
𝐺′ ∶= 1

𝛼 ⋅ 𝐺 where det(𝐺′) = 1
𝛼𝑛 det(𝐺) = 1.

Thus 𝐺′ ∈ SL𝑛(𝐹) ≤ GL𝑛(𝐹) and given 𝐺′ = 1
𝛼 𝐺 we have that 𝐺′ (𝐹 ×𝐼) = 𝐺 (𝐹 ×𝐼).

Therefore, 𝜑(𝐺′) = 𝑖(𝐺′)(𝐹 ×𝐼) = 𝐺′(𝐹 ×𝐼) = 𝐺(𝐹 ×𝐼).
Lemma 4.8. The map �̄� is bijective

Proof. We have shown that �̄� is injective in 4.5 and have shown that �̄� is surjective in 4.7.
Therefore,�̄� defines a bijection from PSL𝑛(𝐹) to PGL𝑛(𝐹).
Theorem 4.9. If 𝐹 is an algebraically closed field, then the map �̄� ∶ PSL𝑛(𝐹) → PGL𝑛(𝐹)
defines a group isomorphism between PSL𝑛(𝐹) and PGL𝑛(𝐹).
Proof. The map �̄� was shown to be a bijection in 4.8 and given �̄� is mulitplicative as it
was defined to be the lift of the homomorphism 𝜑, we can conclude that �̄� defines a group
isomorphism between PSL𝑛(𝐹) and 𝑃𝐺𝐿𝑛(𝐹)

This isomorphism will be essential to the classification of finite subgroups of PGL2(�̄�𝑝),
as we only need understand a the classification of subgroups of PSL2(𝐹) structure to reach
our desired result.

4.2 Christopher Butler’s exposition
Following from the isomorphism defined in the previous section, we can now proceed to
classify the finite subgroups of PGL2(�̄�𝑝) by classifying the finite subgroups of PSL2(�̄�𝑝).
In turn, one can begin classifying the finite subgroups of PSL2(�̄�𝑝) by classifying the finite
subgroups of SL2(�̄�𝑝) and then considering what happens after quotienting by the center,
𝑍(SL2(𝐹)) = ⟨−𝐼⟩.

We now turn our attention to the more general setting when 𝐹 is an arbitrary field that
is algebraically closed, as this will turn out to be sufficient for our purposes.

Given |⟨−𝐼⟩| = 2 when char𝐹 ≠ 2 and ⟨−𝐼⟩ = ⊥ when char𝐹 = 2. When a finite
subgroup of SL2(𝐹) is sent through the canonical mapping 𝜋𝑍(SL2(𝐹)) ∶ SL2(𝐹) → PSL2(𝐹)
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the resulting subgroup will at most shrink by a factor of two or remain intact should the
center not be contained within the subgroup.

We now proceed to classify all finite subgroups of SL2(𝐹) when 𝐹 is algebraically closed
field. From now on, we follow Christopher Butler’s exposition of Dickson’s classification of
finite subgroups of SL2(𝐹) over an algebraically closed field 𝐹 . Christopher has been kind
enough to provide the TeX code so I could prepare this blueprint which crucially hinges on
the result which his exposition covers.
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Chapter 5

Properties of the two
dimensional SL2(𝐹)

5.1 General Notation
Throughout this paper, 𝐹 will denote an arbitrary algebraically closed field. For convenince
we let 𝐿 denote the infinite group SL2(𝐹). The letter 𝑝 will be used to denote the character-
istic of 𝐹 . Recall that the characteristic of a field is the smallest number of times which the
multilplicative identity of the field, say 1, needs to be summed to reach the additive identity
of the field, say 0. If there is no such number, then we regard 𝑝 as being zero, otherwise it
is always a prime.

Unless otherwise stated, the letters 𝛼, 𝛽, 𝛾, 𝛿, 𝜆, 𝛾, and 𝜎 will denote elements of 𝐹 and
𝛿 and 𝜌 elements of 𝐹 ×, where 𝐹 × are the non-zero elements of 𝐹 .

5.2 Subsets of 𝐿𝐿𝐿
In this chapter we make some useful observations about specific elements and subgroups of
𝐿. We define the following elements of 𝐿 as follows.

Special matrices of SL2(𝐹)
Definition 5.1 (The shear matrix of 𝑆𝐿2(𝐹)). Given an element 𝛿 ∈ 𝐹 × we define the
diagonal matrix:

𝑑𝛿 = (𝛿 0
0 𝛿−1)

Definition 5.2 (The diagonal matrix of 𝑆𝐿2(𝐹)). Given an element 𝛿 ∈ 𝐹 we define the
shear matrix:

𝑠𝜎 = (1 0
𝜎 1)

Definition 5.3 (Rotation by 𝜋/2 radians matrix). We denote the matrix which corresponds
to a rotation by 𝜋/2 radians to be:

𝑤 = (0 −1
1 0 )
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The matrices 𝑑, 𝑠 and 𝑤 satisfy the following relations:

Lemma 5.4. For any 𝛿, 𝜌 ∈ 𝐹 × we have that

𝑑𝛿𝑑𝜌 = 𝑑𝛿𝜌

Proof. We verify by matrix multiplication that indeed:

𝑑𝛿𝑑𝜌 = [𝛿 0
0 𝛿−1] [𝜌 0

0 𝜌−1] = [𝛿𝜌 0
0 𝛿−1𝜌−1] = 𝑑𝛿𝜌.

Lemma 5.5. For any 𝜎, 𝛾 ∈ 𝐹 we have that

𝑠𝜎𝑠𝛾 = 𝑠𝜎+𝛾.

Proof. We verify by matrix multiplication that indeed:

𝑠𝜎𝑠𝛾 = [1 0
𝜎 1] [1 0

𝛾 1] = [ 1 0
𝜎 + 𝛾 1] = 𝑠𝜎+𝛾.

Lemma 5.6. We have that for all 𝛿 ∈ 𝐹 × and 𝜎 ∈ 𝐹

𝑑𝛿𝑠𝜎𝑑−1
𝛿 = 𝑠𝜎𝛿−2 .

Proof. We verify by matrix multiplication that indeed:

𝑑𝛿𝑠𝜎𝑑−1
𝛿 =[𝛿 0

0 𝛿−1] [1 0
𝜆 1] [𝛿−1 0

0 𝛿] = [𝛿 0
0 𝛿−1][ 𝛿−1 0

𝜎𝛿−1 𝛿]=[ 1 0
𝜎𝛿−2 1]= 𝑠𝜎𝛿−2 .

Lemma 5.7. For any 𝛿 ∈ 𝐹 × we have:

𝑤𝑑𝛿𝑤−1 = 𝑑−1
𝛿 .

Proof. We verify by matrix multiplication that indeed

𝑤𝑑𝛿𝑤−1 = [ 0 1
−1 0] [𝛿 0

0 𝛿−1] [0 −1
1 0 ] = [ 0 1

−1 0] [ 0 −𝛿
𝛿−1 0 ]=[𝛿−1 0

0 𝛿]= 𝑑−1
𝛿 .

From these relations we can now single out the following subgroups of SL2(𝐹).
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Special subgroups of SL2(𝐹)
Definition 5.8 (The subgroup of diagonal matrices). The set of diagonal matrices with
matrix multiplication is a subgroup of SL2(𝐹):

𝐷 = {𝑑𝛿} = {(𝛿 0
0 𝛿−1) | 𝛿 ∈ 𝐹 ×}

Definition 5.9 (The subgroup of shear matrices). The set of shear matrices with matrix
multiplication is a subgroup of SL2(𝐹):

𝑆 = {𝑠𝜎} = {(1 0
𝜎 1) | 𝜎 ∈ 𝐹}

Definition 5.10 (The subgroup of lower triangular matrices). The set of lower triangular
matrices with matrix multiplication is a subgroup of SL2(𝐹)

𝐿 = 𝐷𝑆

Observe that 𝐿 is the set of all lower triangular matrices in SL2(𝐹) whilst 𝐷𝑤 is the set
of all anti-diagonal matrices.

𝐿 = 𝐷𝑆 = {𝑑𝛿𝑠𝜎} = {[𝛿 0
0 𝛿−1] [1 0

𝜆 1]} = {[ 𝛿 0
𝜆𝛿−1 𝛿−1]} . (5.1)

𝐷𝑤 = {𝑑𝛿𝑤} = {[𝛿 0
0 𝛿−1] [ 0 1

−1 0]} = {[ 0 𝛿
−𝛿−1 0]} . (5.2)

These elements and subgroups are fundamental to this paper and this notation will be
used throughout.

Lemma 5.11 ((𝐷, ⋅) ≅ (𝐹 ×, ⋅)). The map 𝜙 ∶ 𝐹 × ∼→ 𝐷 defined by 𝑑𝛿 ↦ (𝑑𝛿)11 defines a
group isomorphism.

Proof. The function 𝜓 ∶ 𝐹 × → 𝐷 defined by 𝜓(𝛿) = 𝑑𝛿 is a homomorphism between the
group 𝐹 × under normal multiplication and 𝐷 under normal matrix multiplication:

𝜓(𝛿𝜌) = 𝑑𝛿𝜌 = 𝑑𝛿𝑑𝜌 = 𝜓(𝛿)𝜓(𝜌). (by Lemma ??)

Observe that 𝜓 is trivially injective and surjective and thus an isomorphism. So 𝐷 ≅ 𝐹 ×

and 𝐷 is a subgroup of 𝐿.

Lemma 5.12 ((𝑆, ⋅) ≅ (𝐹 , +)). The map 𝜙 ∶ 𝐹 ∼→ 𝑆 defined by 𝑠𝜎 ↦ (𝑠𝜎)11 defines a group
isomorphism.

Proof. The function 𝜙 ∶ 𝐹 → 𝑇 defined by 𝜙(𝜎) = 𝑠𝜎 is a homomorphism between the group
𝐹 under addition and 𝑆 under normal matrix multiplication:

𝜙(𝜎 + 𝛾) = 𝑠𝜎+𝛾 = 𝑠𝜎𝑠𝛾 = 𝜙(𝜎)𝜙(𝛾). (by Lemma ??)

It’s clear that 𝜙 is injective and surjective and thus an isomorphism. So 𝑆 ≅ 𝐹 and 𝑆 is a
subgroup of 𝐿.
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Lemma 5.13. 𝑆 is a normal subgroup of 𝐻
Proof. Let 𝑠𝛾 and 𝑑𝛿𝑠𝜎 be arbitrary elements of 𝑇 and 𝐻 respectively. Conjugating 𝑠𝛾 by
𝑑𝛿𝑠𝜎 gives,

(𝑑𝛿𝑠𝜎)𝑠𝛾(𝑑𝛿𝑠𝜎)−1 = (𝑑𝛿𝑠𝜎)𝑠𝛾(𝑡−1
𝜆 𝑑−1

𝛿 )

= 𝑑𝛿(𝑠𝜎𝑠𝛾𝑡−𝜆)𝑑−1
𝛿 (since 𝑡−1

𝜆 = 𝑡−𝜆)

= 𝑑𝛿𝑠𝛾𝑑−1
𝛿 (by Lemma ??)

= 𝑠𝛾𝛿−2 ∈ 𝑆. (by Lemma ??)

Since 𝑠𝛾 was chosen arbitrarily from 𝑇 we have (𝑑𝛿𝑠𝜎)𝑇 (𝑑𝛿𝑠𝜎)−1 = 𝑇 and since 𝑑𝛿𝑠𝜎 was
chosen arbitrarily from 𝐻, we have that 𝑇 ⊲ 𝐻.

Lemma 5.14. 𝐻/𝑇 ≅ 𝐷.

Proof. The function 𝜋 ∶ 𝐻 → 𝐷 defined by 𝜋(𝑑𝛿𝑠𝜎) = 𝑑𝛿 is a homomorphism between 𝐻
under normal matrix multiplication and 𝐷 under normal matrix multiplication:

𝜋(𝑑𝛿𝑠𝜎𝑑𝜌𝑠𝛾) = 𝜋(𝑑𝛿𝑑𝜌𝑡𝜎𝑠𝛾) (where 𝜎 = 𝜆𝜌2 by Lemma ??)
= 𝑑𝛿𝑑𝜌
= 𝜋(𝑑𝛿𝑠𝜎)𝜋(𝑑𝜌𝑠𝛾).

We see that 𝜋 is trivially surjective and has kernel

𝑘𝑒𝑟(𝜋) = {𝑑𝛿𝑠𝜎 ∈ 𝐻 ∶ 𝜋(𝑑𝛿𝑠𝜎) = 𝐼𝐿} = 𝑇 .

Thus by the First Isomorphism Theorem,

𝐻/𝑘𝑒𝑟(𝜋) ≅ Im(𝜋),
𝐻/𝑇 ≅ 𝐷.

5.3 The Centre of 𝐿𝐿𝐿
Definition 5.15. The centre 𝑍(𝐺) of a group 𝐺 is the set of elements of 𝐺 that commute
with every element of 𝐺.

𝑍(𝐺) = {𝑧 ∈ 𝐺 ∶ ∀𝑔 ∈ 𝐺, 𝑔𝑧 = 𝑧𝑔}.

It is an immediate observation that 𝑍(𝐺) is a normal subgroup of 𝐺, since for each 𝑧 ∈ 𝑍,
𝑔𝑧𝑔−1 = 𝑔𝑔−1𝑧 = 𝑧, ∀𝑔 ∈ 𝐺. It’s also clear that a group is abelian if and only if 𝑍(𝐺) = 𝐺.

For ease of notation, 𝑍(𝐿) will be denoted simply by 𝑍 throughout the rest of this paper.

Lemma 5.16. 𝑍 = ⟨−𝐼𝐿⟩.
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Proof. Take an arbitrary element 𝑥 = [𝛼 𝛽
𝛾 𝛿] ∈ 𝐿 and an arbitrary element 𝑧 = [𝑧1 𝑧2

𝑧3 𝑧4
] ∈

𝑍 and consider their product:

𝑧𝑥 = [𝑧1 𝑧2
𝑧3 𝑧4

] [𝛼 𝛽
𝛾 𝛿] = [𝛼 𝛽

𝛾 𝛿] [𝑧1 𝑧2
𝑧3 𝑧4

] = 𝑥𝑧,

[𝑧1𝛼 + 𝑧2𝛾 𝑧1𝛽 + 𝑧2𝛿
𝑧3𝛼 + 𝑧4𝛾 𝑧3𝛽 + 𝑧4𝛿] = [𝑧1𝛼 + 𝑧3𝛽 𝑧2𝛼 + 𝑧4𝛽

𝑧1𝛾 + 𝑧3𝛿 𝑧2𝛾 + 𝑧4𝛿] . (5.3)

Equating either the top left or bottom right entries, we see that 𝑧2𝛾 = 𝑧3𝛽. Since 𝛽 and
𝛾 can take any values in 𝐹 , for equality to always hold we must have 𝑧2 = 0 = 𝑧3. Hence
equation (5.3) simplifies to

[𝑧1𝛼 𝑧1𝛽
𝑧4𝛾 𝑧4𝛿] = [𝑧1𝛼 𝑧4𝛽

𝑧1𝛾 𝑧4𝛿] .

Thus
𝑧1 = 𝑧4 and 𝑧 = [𝑧1 0

0 𝑧1
] .

Since we are working in the special linear group, det(𝑧) = 1, thus 𝑧1 = ±1 and 𝑍 = ⟨−𝐼𝐿⟩
as required. Observe that this is a cyclic group of order 2 except in the case of 𝑝 = 2 where
−𝐼𝐿 = 𝐼𝐿.

Lemma 5.17. If 𝑝 ≠ 2, then 𝐿 contains a unique element of order 2.

Proof. Consider an arbitrary element 𝑥 ∈ 𝐿 with order 2. That is 𝑥2 = 𝐼𝐿, 𝑥 ≠ 𝐼𝐿 and thus
𝑥 = 𝑥−1.

𝑥 = [𝛼 𝛽
𝛾 𝛿] = [𝛼 𝛽

𝛾 𝛿]
−1

= [ 𝛿 −𝛽
−𝛾 𝛼 ] .

Thus 𝛼 = 𝛿, 𝛽 = −𝛽 ⇒ 2𝛽 = 0 and 𝛾 = −𝛾 ⇒ 2𝛾 = 0. In the case of 𝑝 ≠ 2 this gives
𝛽 = 0 = 𝛾. So

𝑥 = [𝛼 0
0 𝛼] .

Also 𝛼2 = 1 since 𝑥 ∈ SL2(𝐹), so 𝛼 = ±1. For 𝑥 to have order 2, we must have 𝛼 = −1.
Hence there is a unique element of order 2, namely −𝐼𝐿.

5.4 Conjugacy of the Elements of 𝐿𝐿𝐿
Proposition 5.18. Each element of 𝐿 is conjugate to either 𝑑𝛿 for some 𝛿 ∈ 𝐹 ×, or to ±𝑠𝜎
for some 𝜆 ∈ 𝐹 .

Proof. Since 𝐹 is algebraically closed, any element 𝑥 ∈ 𝐿 can be regarded as a linear trans-
formation in the 2 dimensional vector space over 𝐹 , with the eigenvalues 𝜋1 and 𝜋2.
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If 𝜋1 and 𝜋2 are distinct, then 𝑥 is thus diagonalisable. That is, there exists an invert-
ible matrix 𝑎 ∈ 𝐺𝐿(2, 𝐹) such that 𝑦 = 𝑎𝑥𝑎−1 is a diagonal matrix. Furthermore, we can
multiply 𝑎 by a suitable scalar to find an element in 𝐿 which conjugates 𝑥 and 𝑦:

Set 𝑏 = 𝑎
√det(𝑎)

, thus 𝑏𝑥𝑏−1 = 𝑎
√det(𝑎)

𝑥 (√det(𝑎) ) 𝑎−1 = 𝑎𝑥𝑎−1 = 𝑦.

Observe that det(𝑏) = 1, hence 𝑥 and 𝑦 are conjugate in 𝐿. Furthermore, since 𝑦 is a di-
agonal matrix it must belong to the set 𝐷, showing that 𝑥 is conjugate to 𝑑𝛿 for some 𝛿 ∈ 𝐹 ×.

If 𝜋1 = 𝜋2 then 𝑥 has just one repeated eigenvalue. Suppose that 𝑥 is diagonalisable.
Then there exists an element 𝑐 ∈ 𝐺𝐿(2, 𝐹) and a diagonal matrix 𝜋1𝐼𝐺 such that 𝑥 =
𝑐(𝜋1𝐼𝐺)𝑐−1 = 𝜋1𝐼𝐺. Thus 𝑥 = ±𝐼𝐺, which trivially belongs to both 𝐷 and 𝑇 × 𝑍.

Now assume that 𝑥 is not diagonalisable. Chapter 7 of [?] shows that there exists an
element 𝑑 ∈ 𝐺𝐿(2, 𝐹), such that 𝑥 = 𝑑𝑗𝑑−1, where,

𝑗 = [𝜋1 1
0 𝜋1

]

is the Jordan Normal Form of 𝑥. By the method described above, we can multiply 𝑑 by a
suitable scalar to show that 𝑥 is conjugate to 𝑗 in 𝐿. Now we conjugate 𝑗 by an element of
𝐿 whose top left entry is 0.

[0 −𝛾−1

𝛾 𝛿 ] [𝜋1 1
0 𝜋1

] [ 𝛿 𝛾−1

−𝛾 0 ] = [0 −𝛾−1

𝛾 𝛿 ] [𝜋1𝛿 − 𝛾 𝜋1𝛾−1

−𝜋1𝛾 0 ] = [ 𝜋1 0
−𝛾2 𝜋1

]

Now clearly the determinant of 𝑥 is equal to the determinant of 𝑗, namely 1, which means
that 𝜋1 = ±1. This shows that 𝑗 is conjugate in 𝐿 to some element in 𝑇 × 𝑍 as well as 𝑥.
Furthermore, since conjugation is transitive, 𝑥 is conjugate to ±𝑠𝜎 for some 𝜆 ∈ 𝐹 .

5.5 Centralisers & Normalisers
Definition 5.19. The centraliser 𝐶𝐺(𝐻) of a subset 𝐻 of a group 𝐺 is the set of elements
of 𝐺 which commute with each element of 𝐻.

𝐶𝐺(𝐻) = {𝑔 ∈ 𝐺 ∶ 𝑔ℎ = ℎ𝑔, ∀ℎ ∈ 𝐻}.

Definition 5.20. The normaliser 𝑁𝐺(𝐻) of a subset 𝐻 of a group 𝐺 is the set of elements
of 𝐺 which stabilise 𝐻 under conjugation.

𝑁𝐺(𝐻) = {𝑔 ∈ 𝐺 ∶ 𝑔𝐻𝑔−1 = 𝐻}.

Both the centraliser and normaliser of a subset 𝐻 are subgroups of 𝐺. Note also that
the centraliser is a stronger condition than the normaliser and any element in the centraliser
of 𝐻 is also in its normaliser. If 𝐻 is a singleton then it’s clear that its centraliser and
normaliser are equal.
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Proposition 5.21. (i) 𝑁𝐿(𝑇1) ⊂ 𝐻, where 𝑇1 is any subgroup of 𝑇 with order greater than
1.

(ii) 𝐶𝐿(±𝑠𝜎) = 𝑇 × 𝑍 where 𝜆 ≠ 0.

Proof. (i) Let 𝑠𝜎 be an arbitary element of 𝑇1 with 𝜆 ≠ 0. To determine the normaliser of
𝑇1 in 𝐿 we consider which 𝑥 ∈ 𝐿 satisfy 𝑥𝑠𝜎𝑥−1 ∈ 𝑇1.

𝑥𝑠𝜎𝑥−1 = [𝛼 𝛽
𝛾 𝛿] [1 0

𝜆 1] [ 𝛿 −𝛽
−𝛾 𝛼 ]

= [𝛼 𝛽
𝛾 𝛿] [ 𝛿 −𝛽

𝛿𝜆 − 𝛾 𝛼 − 𝛽𝜆]

= [𝛼𝛿 − 𝛽𝛾 + 𝛽𝛿𝜆 −𝛽2𝜆
𝛿2𝜆 𝛼𝛿 − 𝛽𝛾 − 𝛽𝛿𝜆] .

Since 𝑥𝑠𝜎𝑥−1 ∈ 𝑇1 we have −𝛽2𝜆 = 0 and since 𝜆 ≠ 0, we have 𝛽 = 0. Since 𝑠𝜎 was cho-
sen arbitrarily, any element which normalises 𝑇1 is a lower diagonal matrix and is therefore
in 𝐻 by (5.1). Thus 𝑁𝐿(𝑇1) ⊂ 𝐻 as required.

(ii) To determine the centraliser of 𝑠𝜎 in 𝐿, we consider which 𝑦 ∈ 𝐿 satisfy 𝑦𝑠𝜎 = 𝑠𝜎𝑦
for an arbitrarily chosen 𝑠𝜎, with 𝜆 ≠ 0.

𝑦𝑠𝜎 = 𝑠𝜎𝑦,

[𝛼 𝛽
𝛾 𝛿] [1 0

𝜆 1] = [1 0
𝜆 1] [𝛼 𝛽

𝛾 𝛿] ,

[𝛼 + 𝛽𝜆 𝛽
𝛾 + 𝛿𝜆 𝛿] = [ 𝛼 𝛽

𝛾 + 𝛼𝜆 𝛿 + 𝛽𝜆] . (5.4)

Equating the top left entries of (5.4) gives 𝛼 + 𝛽𝜆 = 𝛼 which means 𝛽 = 0 since 𝜆 ≠ 0
by assumption. Equating the bottom left entries gives that 𝛼 = 𝛿. Finally, since det(𝑦) = 1,
we have 𝛼𝛿 = 1 so 𝛼 = ±1. Thus a 𝑦 ∈ 𝐶𝐿(𝑠𝜎) is

𝑦 = [𝛼 0
𝛾 𝛼] . (where 𝛼 = ±1)

So 𝑦 = ±𝑡𝜎 for some 𝜎 ∈ 𝐹 , and 𝑇 𝑍 = {±𝑡𝜎} ⊂ 𝐶𝐿(𝑠𝜎). Now take an arbitrary
𝑠𝛾𝑧 ∈ 𝑇 𝑍.

(𝑠𝛾𝑧)𝑠𝜎 = 𝑠𝜎(𝑠𝛾𝑧),
𝑠𝛾𝑠𝜎𝑧 = 𝑠𝜎𝑠𝛾𝑧, (since 𝑧 ∈ 𝑍)

𝑡𝛾+𝜆 = 𝑡𝛾+𝜆.

Thus 𝑠𝛾𝑧 and indeed the whole of 𝑇 𝑍 is contained in 𝐶𝐿(𝑠𝜎), so 𝐶𝐿(𝑠𝜎) = 𝑇 𝑍.

Since 𝑇 commutes elementwise with 𝑍 and 𝑇 ∩ 𝑍 = {𝐼𝐺}, we can apply Corollary 3.21
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and assert that 𝐶𝐿(𝑠𝜎) = 𝑇 𝑍 ≅ 𝑇 × 𝑍 as required. The centraliser of −𝑠𝜎 is also 𝑇 × 𝑍,
since an element 𝑥 commutes with −𝑠𝜎 if and only if it commutes with 𝑠𝜎:

𝑥𝑡𝜆 = 𝑠𝜎𝑥 ⟺ −(𝑥𝑠𝜎) = −(𝑠𝜎𝑥) ⟺ 𝑥(−𝑠𝜎) = (−𝑠𝜎)𝑥.
Note that in case of 𝜆 = 0, ±𝑠𝜎 ∈ 𝑍 and thus it’s centraliser is the whole of 𝐿.

Proposition 5.22. (i) 𝑁𝐿(𝐷1) = ⟨𝐷, 𝑤⟩, where 𝐷1 is any subgroup of 𝐷 with order greater
than 2.

(ii) 𝐶𝐿(𝑑𝛿) = 𝐷 where 𝛿 ≠ ±1.

Proof. (i) Since |𝐷1| > 3, we can choose a 𝑑𝛿 ∈ 𝐷1 ∖𝑍, that is where 𝛿 ≠ 1. To determine
the normaliser of 𝐷1 in 𝐿 we consider which 𝑥 ∈ 𝐿 satisfy 𝑥𝑑𝛿𝑥−1 ∈ 𝐷1.

𝑥𝑑𝛿𝑥−1 = [𝛼 𝛽
𝛾 𝛿] [𝛿 0

0 𝛿−1] [ 𝛿 −𝛽
−𝛾 𝛼 ]

= [𝛼 𝛽
𝛾 𝛿] [ 𝛿𝛿 −𝛽𝛿

−𝛾𝛿−1 𝛼𝛿−1]

= [𝛼𝛿𝛿 − 𝛽𝛾𝛿−1 𝛼𝛽(𝛿−1 − 𝛿)
𝛾𝛿(𝛿 − 𝛿−1) 𝛼𝛿𝛿−1 − 𝛽𝛾𝛿] ∈ 𝐷1. (5.5)

Since (5.5) is in 𝐷1, the top right and bottom left entries must be 0. Since 𝛿 ≠ ±1, we
have 𝛿 ≠ 𝛿−1 and so 𝛼𝛽 = 0 = 𝛾𝛿.

If 𝛼 = 0, then 𝛽 and 𝛾 are non-zero since det(𝑥) = 1, thus 𝛿 = 0. So det(𝑥) = −𝛾𝛽 = 1 and
−𝛾 = 𝛽−1. (5.5) becomes

[𝛿−1 0
0 𝛿] = 𝑑−1

𝛿 .

Since 𝐷1 is a group, it contains the inverse of each of it’s elements, so 𝑑−1
𝛿 ∈ 𝐷1 as required.

In this case we have 𝑥 ∈ 𝑤𝐷.

If 𝛼 ≠ 0, then similarly 𝛽 = 0, 𝛿 = 𝛼−1 and 𝛾 = 0. (5.5) now becomes

[𝛿 0
0 𝛿−1] = 𝑑𝛿 ∈ 𝐷1.

This time we have 𝑥 ∈ 𝐷. So 𝑥 ∈ 𝐷 ∪ 𝑤𝐷 = ⟨𝐷, 𝑤⟩ and any element which normalises 𝐷1
is in ⟨𝐷, 𝑤⟩, thus 𝑁𝐿(𝐷1) ⊂ ⟨𝐷, 𝑤⟩.

Now take an arbitrary 𝑦 ∈ ⟨𝐷, 𝑤⟩ = 𝐷 ∪ 𝑤𝐷. If 𝑦 ∈ 𝐷 then 𝑦 = 𝑑𝜌1, for some 𝜌1 ∈ 𝐹 ×.

𝑑𝜌1𝑑𝛿𝑑−1
𝜌1 = 𝑑𝛿 ∈ 𝐷1. (by Lemma ??)

If 𝑦 ∈ 𝑤𝐷 then 𝑦 = 𝑤𝑑𝜌2, for some 𝑑𝜌2 ∈ 𝐹 ×.

(𝑤𝑑𝜌2)𝑑𝛿(𝑤𝑑𝜌2)−1 = 𝑤𝑑𝜌2𝑑𝛿𝑑−1
𝜌2 𝑤−1

= 𝑤𝑑𝛿𝑤−1

= 𝑑−1
𝛿 ∈ 𝐷1. (by Lemma ??)
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Thus 𝑦 indeed who whole of ⟨𝐷, 𝑤⟩ is contained in 𝑁𝐿(𝐷1). This inclusion gives the
desired result, 𝑁𝐿(𝐷1) = ⟨𝐷, 𝑤⟩.

(ii) Now we consider which 𝑦 ∈ 𝐿 satisfy 𝑦𝑑𝛿 = 𝑑𝛿𝑦 for an arbitrarily chosen 𝑑𝛿, with
𝛿 ≠ ±1.

𝑦𝑑𝛿 = 𝑑𝜆𝑦,

[𝛼 𝛽
𝛾 𝛿] [𝛿 0

0 𝛿−1] = [𝛿 0
0 𝛿−1] [𝛼 𝛽

𝛾 𝛿] ,

[𝛼𝛿 𝛽𝛿−1

𝛾𝛿 𝛿𝛿−1] = [ 𝛼𝛿 𝛽𝛿
𝛾𝛿−1 𝛿𝛿−1] . (5.6)

Equating the top right and bottom left entries of (5.6) gives that 𝛽 = 0 = 𝛾 since Since
𝛿 ≠ 𝛿−1. Thus 𝛿 = 𝛼−1 and

𝑥 = [𝛼 0
0 𝛼−1] ∈ 𝐷.

Thus 𝑥 and indeed the whole of 𝐶𝐿(𝑑𝛿) is contained in 𝐷. Now take an arbitrary 𝑑𝜌 ∈ 𝐷.

𝑑𝜌𝑑𝛿 = 𝑑𝜌𝛿 = 𝑑𝛿𝑑𝜌.
So clearly 𝐷 ⊂ 𝐶𝐿(𝑑𝛿) and thus 𝐶𝐿(𝑑𝛿) = 𝐷 as required.

Proposition 5.23. Let 𝑎 and 𝑏 be conjugate elements in a group 𝐺. Then ∃ 𝑥 ∈ 𝐺 such
that 𝑥𝐶𝐺(𝑎)𝑥−1 = 𝐶𝐺(𝑏).

Proof. This proposition essentially claims that conjugate elements have conjugate centralis-
ers. Since 𝑎 and 𝑏 are conjugate there exists an 𝑥 ∈ 𝐺 such that 𝑏 = 𝑥𝑎𝑥−1. Let 𝑔 be an
arbitrary element of 𝐶𝐺(𝑎). Then,

(𝑥𝑔𝑥−1)(𝑥𝑎𝑥−1) = 𝑥𝑔𝑎𝑥−1

= 𝑥𝑎𝑔𝑥−1 (since 𝑔 ∈ 𝐶𝐺(𝑎))
= (𝑥𝑎𝑥−1)(𝑥𝑔𝑥−1).

Thus 𝑥𝑔𝑥−1 ∈ 𝐶𝐺(𝑥𝑎𝑥−1). Since 𝑔 was chosen arbitrarily,

𝑥𝐶𝐺(𝑎)𝑥−1 ⊂ 𝐶𝐺(𝑥𝑎𝑥−1) = 𝐶𝐺(𝑏).
Conversely, let ℎ be an arbitary element of 𝐶𝐺(𝑥𝑎𝑥−1). Then,

(𝑥−1ℎ𝑥)𝑎 = 𝑥−1ℎ(𝑥𝑎𝑥−1)𝑥
= 𝑥−1(𝑥𝑎𝑥−1)ℎ𝑥 (since ℎ ∈ 𝐶𝐺(𝑥𝑎𝑥−1))
= 𝑎(𝑥−1ℎ𝑥).

So 𝑥−1ℎ𝑥 ∈ 𝐶𝐺(𝑎) and since ℎ was arbitrarily chosen from 𝐶𝐺(𝑥𝑎𝑥−1),
𝑥−1𝐶𝐺(𝑥𝑎𝑥−1)𝑥 ⊂ 𝐶𝐺(𝑎). Multiplication on the left by 𝑥 and on the right by 𝑥−1 gives
𝐶𝐺(𝑏) = 𝐶𝐺(𝑥𝑎𝑥−1) ⊂ 𝑥𝐶𝐺(𝑎)𝑥−1. Since we have shown that each set contains the other,
𝑥𝐶𝐺(𝑎)𝑥−1 = 𝐶𝐺(𝑏) as required.
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Corollary 5.24. The centraliser of an element 𝑥 in 𝐿 is abelian unless 𝑥 belongs to the
centre of 𝐿.

Proof. This is almost an immediate consequence of the preceding results. Propositions 5.21
and 5.22 show that an element of the form ±𝑠𝜎 which does not lie in the centre of 𝐿 has
centraliser 𝑇 × 𝑍, whilst a non-central element of the form 𝑑𝛿 has centraliser 𝐷. Both 𝑇
and 𝐷 are abelian since they are isomoprhic to 𝐹 and 𝐹 × respectively. Let 𝑠𝜎𝑧1 and 𝑠𝛾𝑧2
be arbitrary elements of 𝑇 × 𝑍.

(𝑠𝜎𝑧1)(𝑠𝛾𝑧2) = 𝑠𝜎𝑠𝛾𝑧2𝑧1 (since 𝑧1 ∈ 𝑍)
= 𝑠𝛾𝑠𝜎𝑧2𝑧1 (since 𝑇 is abelian)
= (𝑠𝛾𝑧2)(𝑠𝜎𝑧1). (since 𝑧2 ∈ 𝑍)

Thus 𝑇 × 𝑍 is also abelian. Since every element of 𝐿 is conjugate to 𝑑𝛿 or ±𝑠𝜎 by
Proposition 5.18 and conjugate elements have conjugate centralisers by Proposition 5.23,
the centraliser of each 𝑥 ∈ 𝐿 ∖ 𝑍 is conjugate to either 𝑇 × 𝑍 or 𝐷. Proposition 3.17(iii)
shows that conjugate subgroups are isomorphic and therefore have the same structure, thus
since both 𝑇 × 𝑍 and 𝐷 are abelian, 𝐶𝐿(𝑥) is also abelian. Note that in general this does
hold for 𝑥 ∈ 𝑍, since its centraliser is the whole of 𝐿 which is not abelian unless 𝐿 = 𝑍.

5.6 The Projective Line & Triple Transitivity
It is convenient to sometimes take a geometric viewpoint and regard the elements of 𝐿 as
pairs of vectors in the 2-dimensional vector space over 𝐹 , which we will denote 𝑉 . An
element of 𝐿 is thus a linear transformation of 𝑉 .
Definition 5.25. Let ℒ be the set of all 1-dimensional subspaces of 𝑉 . A subset 𝒮 of ℒ is
called a subspace of ℒ if there is a subspace 𝑈 of 𝑉 such that 𝒮 is the set of all 1-dimensional
spaces of 𝑈 . We have dim 𝑈 = dim 𝒮 + 1. The set ℒ on which this concept of subspaces is
defined is called the projective line on 𝑉 and an element of ℒ is a 0-dimensional subspace
of ℒ and consequently called a point. The projective line can be considered as a straight
line in the field, plus a point at infinity.

Any 1-dimensional subspace of 𝑉 is a set of vectors of the form 𝜂𝑢, where 𝑢 is a non-zero
vector of 𝑉 and 𝜂 ∈ 𝐹 ×. Thus the points of ℒ are equivalence classes with the following
relation defined on the set of vectors of 𝑉 .

𝑢 = [𝑢1
𝑢2

] ∼ [𝑣1
𝑣2

] = 𝑣 ⟺ 𝑢 = 𝜂𝑣, (for 𝜂 ∈ 𝐹 ×).

Notice that 𝑢 and 𝑣 are equivalent if and only if 𝑢1𝑣2 = 𝑣1𝑢2. Importantly each point
𝑃𝑖 of ℒ can be represented by a corresponding equivalence class of vectors of 𝑉 , that is, 𝑃
corresponds to 𝑢 if 𝑃 = 𝑢1/𝑢2. In the case when 𝑢2 = 0, this corresponds to the point at
infinity.
Definition 5.26. Let 𝑆 be a permutation group which acts on a set 𝑋 and {𝑥1, 𝑥2, 𝑥3} and
{𝑥′

1, 𝑥′
2, 𝑥′

3} be two subsets of distinct elements of 𝑋. Then 𝑆 is said be triply transitive
on 𝑋 if there is an element 𝜋 ∈ 𝑆 such that,

𝑥𝜋
𝑖 = 𝑥′

𝑖, (𝑖 = 1,2 or 3).

25



Theorem 5.27. Let ℒ be the projective line over the field 𝐹 . Then 𝐿 is triply transitive on
the set of the points of ℒ.

Proof. Let 𝑃1, 𝑃2 and 𝑃3 be distinct points of ℒ and 𝑝𝑖 be a vector in 𝑉 corresponding to
𝑃𝑖. Since each 𝑃𝑖 is distinct, 𝑝1, 𝑝2 and 𝑝3 are thus pairwise linearly independent. Thus 𝑝1
and 𝑝2 form a basis for 𝑉 and it’s clear that there exist 𝛼, 𝛽 ∈ 𝐹 × such that,

𝑝3 = 𝛼𝑝1 + 𝛽𝑝2.

Now, let 𝑄1, 𝑄2 and 𝑄3 be three more distinct points of ℒ and 𝑞𝑖 be a vector in 𝑉
corresponding to 𝑄𝑖. Similarly, by the above argument, there exist 𝛾, 𝛿 ∈ 𝐹 × such that,

𝑞3 = 𝛾𝑞1 + 𝛿𝑞2.

Let 𝜋 ∈ 𝐺𝐿(2, 𝐹) be the linear transformation which sends 𝛼𝑝1 to 𝛾𝑞1 and 𝛽𝑝2 to 𝛿𝑞2.
Thus,

𝜋(𝑝3) = 𝜋(𝛼𝑝1 + 𝛽𝑝2) = 𝜋(𝛼𝑝1) + 𝜋(𝛽𝑝2) = 𝛾𝑞1 + 𝛿𝑞2 = 𝑞3

Hence we get 𝑃 𝜋
1 = 𝑄1, 𝑃 𝜋

2 = 𝑄2 and 𝑃 𝜋
3 = 𝑄3 and 𝐺𝐿(2, 𝐹) is triply transitive. Now

set,

𝜂 = √ 1
det 𝜋 .

Consider the mapping 𝜃 which sends 𝛼𝑝1 to 𝜂𝛾𝑞1 and 𝛽𝑝2 to 𝜂𝛿𝑞2. Observe that,

det 𝜃 = 𝜂2 det 𝜋 = 1

So 𝜃 ∈ 𝑆𝐿(2, 𝐹) = 𝐿 and since 𝑃 𝜃
1 = 𝑄1, 𝑃 𝜃

2 = 𝑄2 and 𝑃 𝜃
3 = 𝑄3, we have that 𝐿 is also

triply transitive.

The following proposition looks at what happens when the group 𝐿 acts on the projective
line ℒ.

Proposition 5.28. (i) Each element of the form 𝑑𝛿 (with 𝛿 ≠ ±1), fixes the same two
points on the projective line ℒ and fix no other point.

(ii) Each element of the form ±𝑠𝜎 (with 𝜆 ≠ 0), fixes the same point 𝑃 on ℒ and fix no
other point. Furthermore, Stab(𝑃 ) = 𝐻.

(iii) All conjugate elements have the same number of fixed points on ℒ.

(iv) Any noncentral element of 𝐿 has at most 2 fixed points on ℒ.

Proof. (i) Let 𝑃 be a fixed a point of an arbitrary 𝑑𝛿 ∈ 𝐷, with 𝛿 ≠ ±1 and let 𝑢 belong to
the corresponding equivalence class of vectors of 𝑉 to 𝑃 .

𝑑𝛿𝑢 = [𝛿 0
0 𝛿−1] [𝑢1

𝑢2
] = [ 𝑢1𝛿

𝑢2𝛿−1] ∼ [𝑢1
𝑢2

] ,

𝑢1𝑢2𝛿 = 𝑢1𝑢2𝛿−1.
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Since 𝛿 ≠ ±1, 𝛿 does not equal 𝛿−1, and so either 𝑢1 = 0 or 𝑢2 = 0. Thus 𝑢 is equivalent

to either the vector [0
1] or [1

0] and these correspond to 2 distinct points of ℒ which are
fixed by 𝑑𝛿.

(ii) Let 𝑃 be a fixed a point of an arbitrary 𝑠𝜎, with 𝜆 ≠ 0, and let 𝑢 be the corresponding
element of 𝑉 to 𝑃 .

𝑠𝜎𝑢 = [1 0
𝜆 1] [𝑢1

𝑢2
] = [ 𝑢1

𝑢1𝜆 + 𝑢2
] ∼ [𝑢1

𝑢2
] ,

𝑢1𝑢2 = 𝑢1
2𝜆 + 𝑢1𝑢2.

This gives 𝑢1
2𝜆 = 0 and since 𝜆 ≠ 0 we have 𝑢1 = 0. Thus 𝑠𝜎 has just one fixed point,

𝑃 which corresponds to the equivalence class of [0
1] in 𝑉 . We show also that 𝑃 is also the

only fixed point of −𝑠𝜎, with 𝜆 ≠ 0.

−𝑠𝜎𝑢 = [−1 0
𝜆 −1] [𝑢1

𝑢2
] = [ −𝑢1

𝑢1𝜆 − 𝑢2
] ∼ [𝑢1

𝑢2
] ,

−𝑢1𝑢2 = 𝑢1
2𝜆 − 𝑢1𝑢2.

So again 𝑢1 = 0 and −𝑠𝜎 fixes 𝑃 and no other point. We now calculate the stabiliser of
𝑃 in 𝐿, by considering which 𝑥 ∈ 𝐿 fix 𝑃 .

𝑥𝑢 = [𝛼 𝛽
𝛾 𝛿] [0

1] = [𝛽
𝛿] ∼ [0

1] .

Thus 𝛽 = 0 and 𝑥 ∈ 𝐻. Since 𝑥 was chosen arbitrarily from Stab(𝑃 ), we have
Stab(𝑃 ) ⊂ 𝐻. Now let an arbitrarily chosen 𝑦 ∈ 𝐻 act on 𝑃 .

𝑦𝑢 = [𝛼 0
𝛾 𝛼−1] [0

1] = [ 0
𝛼−1] ∼ [0

1] .

Thus 𝑦 and indeed 𝐻 is contained in Stab(𝑃 ), so Stab(𝑃 ) = 𝐻 as desired.

(iii) Let 𝑃𝑖 (𝑖 = 1, 2, ...) be the fixed points of 𝑥 ∈ 𝐿 and let 𝑦 be conjugate to 𝑥 in 𝐿.
That is, there exists a 𝑔 ∈ 𝐿 such that 𝑥 = 𝑔𝑦𝑔−1.

𝑥𝑃𝑖 = 𝑃𝑖,
𝑔𝑦𝑔−1𝑃𝑖 = 𝑃𝑖,
𝑦(𝑔−1𝑃𝑖) = (𝑔−1𝑃𝑖).

This shows that 𝑃𝑖 is a fixed point of 𝑥 if and only if 𝑔−1𝑃𝑖 is a fixed point of 𝑦. Thus
conjugate elements have the same number of fixed points.

(iv) By Proposition 5.18(i), every element of 𝐿 is conjugate to either 𝑑𝛿 or ±𝑠𝜎, so since
conjugate elements have the same number of fixed points, every element of 𝐿∖𝑍 has either
the same number of fixed points as 𝑑𝛿 (with 𝛿 ≠ ±1), namely 2, or the same number as ±𝑠𝜎,
(with 𝜆 ≠ 0), namely 1.
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Chapter 6

The Maximal Abelian Subgroup
Class Equation

6.1 A Finite Subgroup of 𝐿𝐿𝐿
We now return to the realm of finite groups and consider 𝐺 to be an arbitrary finite sub-
group of 𝐿. We will still continue to use 𝑍 to denote the centre of 𝐿, and will use 𝑍(𝐺)
whenever we refer to the centre of 𝐺.

Observe that if 𝑍 is not contained in 𝐺, then 𝑍 must contain a non-identity element,
thus |𝑍| = 2 and 𝑝 ≠ 2 by Lemma 5.16. Recall that 𝐿 has a unique element of order 2 by
Lemma 5.17, −𝐼𝐿, which is not in 𝐺, therefore 𝐺 has no element of order 2.

By Cauchy’s Theorem, which says that if a prime 𝑝 divides the order of a finite group,
then the group contains an element of order 𝑝, we deduce that 2 does not divide the order
of 𝐺.

This means that |𝐺| and |𝑍| are relatively prime, so 𝐺 ∩ 𝑍 = {𝐼𝐿} and we can use Corollary
3.21 to show that 𝐺𝑍 ≅ 𝐺 × 𝑍. This shows that regardless of whether 𝐺 contains 𝑍 or not,
its structure is uniquely determined by 𝐺𝑍, so it suffices to only consider the case when
𝑍 ⊂ 𝐺.

6.2 Maximal Abelian Subgroups
Definition 6.1 (Maximal Abelian Subgroup). Let 𝐻 and 𝐽 be subgroups of a group 𝐺 where
𝐻 is abelian. 𝐻 is called maximal abelian if 𝐽 is not abelian whenever 𝐻 ⊊ 𝐽 .

Definition 6.2 (Elementary Abelian). A group 𝐺 is said to be elementary abelian if it
is abelian and every non-trivial element has order 𝑝, where 𝑝 is prime.

Definition 6.3. Let 𝔐 denote the set of all maximal abelian subgroups of 𝐺.

Maximal abelian subgroups play an important role in determining the structure of 𝐺. In
particular, every element in 𝐺 must be contained in some maximal abelian subgroup, since
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every element commutes at least with itself and 𝑍. This will allow us to decompose 𝐺 into
the conjugacy classes of these maximal abelian subgroups. Note also that unless 𝐺 = 𝑍,
𝑍 is not a maximal abelian subgroup, because for each 𝑥 ∈ 𝐺∖𝑍, ⟨𝑍, 𝑥⟩ is clearly a larger
abelian subgroup than 𝑍.

We will shortly prove an important theorem regarding the maximal abelian subgroups of 𝐺,
but in order to do so we require the following two lemmas.

Lemma 6.4. If 𝐺 is a finite group of order 𝑝𝑚 where 𝑝 is prime and 𝑚 > 0, then 𝑝 divides
|𝑍(𝐺)|.
Proof. Let 𝐶(𝑥) be the set of elements of 𝐺 which are conjugate in 𝐺 to 𝑥, we call this
the conjugacy class of 𝑥. Bhattacharya shows that the set of all conjugacy classes form a
partition of 𝐺 [2, p.112]. Now consider the following rearranged class equation of 𝐺, where
𝑆 is a subset of 𝐺 containing exactly one element from each conjugacy class not contained
in 𝑍(𝐺).

|𝐺| − ∑
𝑥∈𝑆

[𝐺 ∶ 𝑁𝐺(𝑥)] = |𝑍(𝐺)|. (6.1)

Since |𝐺| = 𝑝𝑚, each subgroup of 𝐺 is of order 𝑝𝑘 for some 𝑘 ≤ 𝑚. In particular each
𝑁𝐺(𝑥) has order 𝑝𝑘 and is strictly contained in 𝐺 since 𝑥 ∉ 𝑍(𝐺) by assumption. Thus each
[𝐺 ∶ 𝑁𝐺(𝑥)] > 1, and are therefore divisible by 𝑝. Since 𝑝 divides the left hand side of (6.1),
it must also divide the right, thus 𝑝 divides |𝑍(𝐺)|.

Lemma 6.5. Every finite subgroup of a multiplicative group of a field is cyclic.

Proof. See [?, p.41].

Theorem 6.6. Let 𝐺 be an arbitrary finite subgroup of 𝐿 containing 𝑍.
(i) If 𝑥 ∈ 𝐺∖𝑍 then we have 𝐶𝐺(𝑥) ∈ 𝔐.

(ii) For any two distinct subgroups 𝐴 and 𝐵 of 𝔐, we have

𝐴 ∩ 𝐵 = 𝑍.

(iii) An element 𝐴 of 𝔐 is either a cyclic group whose order is relatively prime to 𝑝, or of
the form 𝑄 × 𝑍 where 𝑄 is an elementary abelian Sylow 𝑝-subgroup of 𝐺.

(iv) If 𝐴 ∈ 𝔐 and |𝐴| is relatively prime to 𝑝, then we have [𝑁𝐺(𝐴) ∶ 𝐴] ≤ 2. Furthermore,
if [𝑁𝐺(𝐴) ∶ 𝐴] = 2, then there is an element 𝑦 of 𝑁𝐺(𝐴)∖𝐴 such that,

𝑦𝑥𝑦−1 = 𝑥−1 ∀𝑥 ∈ 𝐴.

(v) Let 𝑄 be a Sylow 𝑝-subgroup of 𝐺. If 𝑄 ≠ {𝐼𝐺}, then there is a cyclic subgroup 𝐾 of 𝐺
such that 𝑁𝐺(𝑄) = 𝑄𝐾. If |𝐾| > |𝑍|, then 𝐾 ∈ 𝔐.

Proof. (i) Let 𝑥 be chosen arbitrarily from 𝐺∖𝑍. Then by Corollary 5.24, 𝐶𝐿(𝑥) is abelian.
By definition, 𝐶𝐺(𝑥) = 𝐶𝐿(𝑥) ∩ 𝐺, and using the elementary fact that the intersection of 2
groups is itself a group, we have 𝐶𝐺(𝑥) < 𝐶𝐿(𝑥). Now since every subgroup of an abelian
group is abelian, 𝐶𝐺(𝑥) is also abelian.
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Now let 𝐽 be a maximal abelian subgroup of 𝐺 containing 𝐶𝐺(𝑥). Since 𝐽 is abelian
and 𝑥 ∈ 𝐶𝐺(𝑥) ⊂ 𝐽 , we have 𝑗𝑥 = 𝑥𝑗, ∀𝑗 ∈ 𝐽 , thus 𝐽 ⊂ 𝐶𝐺(𝑥). Therefore 𝐽 = 𝐶𝐺(𝑥) and
𝐶𝐺(𝑥) ∈ 𝔐.

(ii) Consider 𝑥 ∈ 𝐴 ∩ 𝐵. Since both 𝐴 and 𝐵 are abelian, 𝑥 commutes with each 𝑎 ∈ 𝐴 and
𝑏 ∈ 𝐵 and thus 𝐶𝐺(𝑥) contains both 𝐴 and 𝐵. If 𝑥 ∈ 𝐺 ∖ 𝑍, then 𝐶𝐺(𝑥) ∈ 𝔐 by (i) and
because 𝐴 and 𝐵 are distinct we have 𝐴 ⊊ 𝐴 ∪ 𝐵 ⊂ 𝐶𝐺(𝑥). This contradicts the fact that
𝐴 is maximum abelian and thus 𝑥 ∈ 𝑍. Finally, note that Z is contained in every maximal
abelian subgroup, since otherwise we would have the contradiction that ⟨𝐴, 𝑍⟩ would gen-
erate a larger abelian subgroup than 𝐴. Hence 𝐴 ∩ 𝐵 = 𝑍.

(iii) First consider the trivial case of 𝐺 = 𝑍. Here 𝐺 is the only element of 𝔐. If 𝑝 ≠ 2 then
|𝐺| = 2 and 𝐺 is a cyclic group whose order is relatively prime to 𝑝. If 𝑝 = 2 then 𝐺 = 𝐼𝐺
which is trivially a 𝑆𝑝-subgroup.

Now assume 𝐺 ≠ 𝑍. Since 𝑍 ∉ 𝔐, each 𝐴 ∈ 𝔐 contains at least one 𝑥 ∉ 𝑍. By Propo-
sition 5.18 this 𝑥 is conjugate to either 𝑑𝜔 or ±𝑡𝜆 in 𝐿. It suffices to only consider these cases:

𝑥𝑥𝑥 conjugate to 𝑑𝜔𝑑𝜔𝑑𝜔 in 𝐿𝐿𝐿. There is a 𝑦 ∈ 𝐿 such that 𝑥 = 𝑦𝑑𝜔𝑦−1. Since 𝑥 ∉ 𝑍, we
have 𝑑𝜔 ∉ 𝑍, because otherwise we get the contradiction,

𝑥 = 𝑦𝑑𝜔𝑦−1 = 𝑑𝜔 ∈ 𝑍.
Thus 𝜔 ≠ ±1. Let 𝐴 = 𝐶𝐺(𝑥), since 𝐶𝐺(𝑥) ∈ 𝔐 by part (i). Observe that

𝐶𝐺(𝑑𝜔) < 𝐶𝐿(𝑑𝜔) (see proof of (i))
= 𝐷 (by Lemma 5.22)
≅ 𝐹 ∗. (by Lemma ??)

Since 𝐴 is conjugate to 𝐶𝐺(𝑑𝜔) by Proposition 5.23, we have that 𝐴 is isomorphic to a
finite subgroup of 𝐹 ∗ and by Lemma 6.5, 𝐴 is cyclic. By Lagrange’s Theorem any finite
subgroup of 𝐹 ∗ has an order which divides 𝑝𝑚 − 1 for some 𝑚 ∈ ℤ+, and since 𝑝 ∤ (𝑝𝑚 − 1),
|𝐴| is relatively prime to 𝑝.

𝑥𝑥𝑥 conjugate to ±𝑡𝜆±𝑡𝜆±𝑡𝜆 in 𝐿𝐿𝐿. Again let 𝐴 = 𝐶𝐺(𝑥) ∈ 𝔐. 𝐴 is conjugate to 𝐶𝐺(±𝑡𝜆) in
𝐿 by Proposition 5.23. Since 𝑥 ∉ 𝑍, we have 𝜆 ≠ 0. Observe that

𝐶𝐺(±𝑡𝜆) < 𝐶𝐿(±𝑡𝜆)
= 𝑇 × 𝑍 (by Lemma 5.21)
≅ 𝐹 × 𝑍. (by Lemma ??)

So 𝐴 is isomorphic to a finite subgroup of 𝐹 × 𝑍, call it 𝑄 × 𝑍. Now 𝐴 = 𝑄 × 𝑍 ≅ 𝑄𝑍
by Corollary 3.21, which means that an arbitrary element of 𝐴 is of the form 𝑞1𝑧1, where
𝑞1 ∈ 𝑄, 𝑧1 ∈ 𝑍.

𝑞1𝑧1𝑞2𝑧2 = 𝑞2𝑧2𝑞1𝑧1, (𝐴 ∈ 𝔐)
𝑞1𝑞2𝑧1𝑧2 = 𝑞2𝑞1𝑧1𝑧2, (𝑧1, 𝑧2 ∈ 𝑍)

𝑞1𝑞2𝑧1𝑧2(𝑧1𝑧2)−1 = 𝑞2𝑞1𝑧1𝑧2(𝑧1𝑧2)−1,
𝑞1𝑞2 = 𝑞2𝑞1.
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Thus 𝑄 is also abelian. Recall from the proof of Proposition 5.18(ii) that all non-trivial
elements of 𝑇 have order 𝑝, so each non-trivial element of 𝑄 has order 𝑝 which means that
𝑄 is elementary abelian. Thus 𝑄 has order 𝑝𝑚, for some 𝑚 ∈ ℤ+.

Now let 𝑆 be a Sylow 𝑝-subgroup containing 𝑄. We apply Lemma 6.4 to determine that 𝑝
divides |𝑍(𝑆)|, moreover |𝑍(𝑆)| ≥ 𝑝.

If 𝑝 = 2, then 𝑍 = 𝐼𝐿 by Lemma 5.16. So |𝑍| = 1 and hence |𝑍(𝑆)| ≥ 2 > |𝑍|.
If 𝑝 > 2, then 𝑍 = ⟨−𝐼𝐿⟩ also by Lemma 5.16. So |𝑍| = 2 and again we get |𝑍(𝑆)| > 2 = |𝑍|.

So 𝑍(𝑆) must contain at least one element which is not in 𝑍, let 𝑦 be one such element. Let
𝑠1𝑧1 be an arbitrary element of 𝑆 × 𝑍.

(𝑠1𝑧1)𝑦(𝑠1𝑧1)−1 = (𝑠1𝑧1)𝑦(𝑧−1
1 𝑠−1

1 )
= 𝑠1𝑦(𝑧1𝑧−1

1 )𝑠−1
1 (since 𝑦 ∈ 𝐿, 𝑧1 ∈ 𝑍)

= 𝑦(𝑠1𝑠−1
1 ) (since 𝑠1 ∈ 𝑆, 𝑦 ∈ 𝑍(𝑆))

= 𝑦

Thus 𝑠1𝑧1 ∈ 𝐶𝐺(𝑦) and since it was chosen arbitrarily, 𝑆 × 𝑍 ⊂ 𝐶𝐺(𝑦). Also since
𝑦 ∈ 𝐺∖𝑍 we have 𝐶𝐺(𝑦) ∈ 𝔐 by part (i).

𝐴 = 𝑄 × 𝑍 ⊂ 𝑆 × 𝑍 ⊂ 𝐶𝐺(𝑦).
Since 𝐴 and 𝐶𝐺(𝑦) are both in 𝔐 it must be that 𝐴 = 𝐶𝐺(𝑦). This means 𝑄 = 𝑆 and

𝑄 is a Sylow 𝑝-subgroup of G.

(iv) If |𝐴| ≤ 2 then 𝐴 = 𝑍 = 𝐺. So 𝐴 is trivially normal in 𝐺 and [𝑁𝐺(𝐴) ∶ 𝐴] = 1.

Now assume that |𝐴| > 2. Since |𝐴| is relatively prime to 𝑝, we have that 𝐴 is a cyclic
group conjugate to a finite subgroup of 𝐷 in 𝐿 by the proof of part (iii), call this subgroup
𝐴. Thus both 𝐴 and 𝐷 have orders greater than 2. Applying Proposition 5.22 we observe
that

𝑁𝐿(𝐴) = ⟨𝐷, 𝑤⟩ = 𝑁𝐿(𝐷). (6.2)

Since 𝐴 and 𝐴 are conjugate in 𝐿, there exists an element 𝑧 ∈ 𝐿 such that 𝑧𝐴𝑧−1 = 𝐴.
This 𝑧 determines an inner automorphism of 𝐿 defined by

𝑖𝑧 ∶ 𝐿 ⟶ 𝐿, where 𝑖𝑧(𝑡) = 𝑧𝑡𝑧−1 ∀ 𝑡 ∈ 𝐿.

Let 𝑖𝑧(𝐺) = 𝐺 denote the image of 𝐺 under 𝑖𝑧. Since 𝐴 is a maximal abelain subgroup
of 𝐺 it’s a simple task to show that 𝐴 is a maximal abelian subgroup of 𝐺 and I will leave
this to the reader to verify. We now show that 𝑖𝑧(𝑁𝐺(𝐴)) = 𝑁𝐺(𝐴) . Take an arbitrary
𝑔 ∈ 𝑁𝐺(𝐴).

(𝑧𝑔𝑧−1)𝐴(𝑧𝑔𝑧−1)−1 = 𝑧𝑔(𝑧−1𝐴𝑧)𝑔−1𝑧−1

= 𝑧(𝑔𝐴𝑔−1)𝑧−1 (since 𝑧𝐴𝑧−1 = 𝐴)
= 𝑧𝐴𝑧−1 (since 𝑔 ∈ 𝑁𝐺(𝐴))
= 𝐴.
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So 𝑧𝑔𝑧−1 = 𝑖𝑧(𝑔) ∈ 𝑁𝐺(𝐴) and since it was chosen arbitrarily, 𝑖𝑧(𝑁𝐺(𝐴)) ⊂ 𝑁𝐺(𝐴).
Now take an arbitrary 𝑧ℎ𝑧−1 ∈ 𝑁𝐺(𝐴).

𝐴 = (𝑧ℎ𝑧−1)𝐴(𝑧ℎ𝑧−1)−1

= 𝑧ℎ(𝑧−1𝐴𝑧)ℎ−1𝑧−1

= 𝑧ℎ𝐴ℎ−1𝑧−1. (since 𝐴 = 𝑧−1𝐴𝑧)

Now multiplication on the left by 𝑧−1 and right by 𝑧 gives:

𝐴 = 𝑧−1𝐴𝑧 = ℎ𝐴ℎ−1,

so ℎ ∈ 𝑁𝐺(𝐴). Furthermore, 𝑧ℎ𝑧−1 and indeed the whole of 𝑁𝐺(𝐴) is contained in
𝑖𝑧(𝑁𝐺(𝐴)). Thus 𝑖𝑧(𝑁𝐺(𝐴)) = 𝑁𝐺(𝐴). In particular, we have,

[𝑁𝐺(𝐴) ∶ 𝐴] = [𝑁𝐺(𝐴) ∶ 𝐴]. (6.3)

Since 𝐺 < 𝐿, the normaliser of 𝐴 in 𝐺 is simply the normaliser of 𝐴 in 𝐿 restricted to 𝐺,
thus 𝑁𝐺(𝐴) < 𝑁𝐿(𝐴) = 𝑁𝐿(𝐷) by (6.2). Now since 𝐷 ⊲ 𝑁𝐿(𝐷), the Second Isomorphism
Theorem shows that,

𝑁𝐺(𝐴)/(𝑁𝐺(𝐴) ∩ 𝐷) ≅ 𝐷𝑁𝐺(𝐴)/𝐷. (6.4)

Clearly 𝐴 ⊂ 𝐺 ∩ 𝐷. We show that this inclusion is infact an equality. Assume that there
exists some 𝑑𝜔 ∈ 𝐺 ∩ 𝐷 which is not in 𝐴. The group ⟨𝑑𝜔, 𝐴⟩ is thus an abelian subgroup of
𝐺, strictly larger than 𝐴 and contradicting the fact that 𝐴 is maximal abelian in 𝐺. Thus
𝐴 = 𝐺 ∩ 𝐷. It is trivial to see that 𝐴 ⊂ 𝑁𝐺(𝐴) ∩ 𝐷. Also 𝑁𝐺(𝐴) ∩ 𝐷 ⊂ 𝐺 ∩ 𝐷 = 𝐴. So,

𝐴 = 𝑁𝐺(𝐴) ∩ 𝐷. (6.5)

Observe also that,

𝐷𝑁𝐺(𝐴) = {𝐷, ⟨𝐷, 𝑤⟩} ⊂ ⟨𝐷, 𝑤⟩ = 𝑁𝐿(𝐷). (6.6)

Now we piece the preceding results together to give the desired result.

𝑁𝐺(𝐴)/𝐴 ≅ 𝑁𝐺(𝐴)/(𝑁𝐺(𝐴) ∩ 𝐷) (by (6.5))

≅ 𝐷𝑁𝐺(𝐴)/𝐷 (by (6.4))
⊂ 𝑁𝐿(𝐷)/𝐷 (by (6.6))
= ⟨𝐷, 𝑤⟩/𝐷 ≅ ℤ2.

We have shown that 𝑁𝐺(𝐴)/𝐴 is isomorphic to a subset of ℤ2. Thus by (6.3) we have
established that,

[𝑁𝐺(𝐴) ∶ 𝐴] = [𝑁𝐺(𝐴) ∶ 𝐴] ≤ 2.

For the second part, if [𝑁𝐺(𝐴) ∶ 𝐴] = 2, then the above argument shows that 𝑁𝐺(𝐴)/𝐴 ≅
ℤ2. Thus 𝐷𝑁𝐺(𝐴) = 𝑁𝐿(𝐷) = ⟨𝐷, 𝑤⟩. This means that 𝑁𝐺(𝐴) contains some element
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𝑤𝑑𝜔. In fact, since 𝑤𝑑𝜔 ∉ 𝐷, we have 𝑤𝑑𝜔 ∈ 𝑁𝐺(𝐴)∖𝐴. Take any element 𝑥 ∈ 𝐴. Since
𝐴 = 𝑧𝐴𝑧−1, 𝑧𝑥𝑧−1 ∈ 𝐴, call it 𝑑𝜎. Let 𝑦 = 𝑧−1𝑤𝑑𝜔𝑧. Since 𝑤𝑑𝜔 ∈ 𝑁𝐺(𝐴)∖𝐴 it follows that
𝑦 ∈ 𝑁𝐺(𝐴)∖𝐴. We show that this 𝑦 inverts 𝑥:

𝑦𝑥𝑦−1 = (𝑧−1𝑤𝑑𝜔𝑧)(𝑧−1𝑑𝜎𝑧)(𝑧−1𝑑−1
𝜔 𝑤−1𝑧)

= 𝑧−1𝑤𝑑𝜔𝑑𝜎𝑑−1
𝜔 𝑤−1𝑧

= 𝑧−1𝑤𝑑𝜎𝑤−1𝑧
= 𝑧−1𝑑−1

𝜎 𝑧 (by Lemma ??)
= 𝑥−1.

(v) By part (iii), 𝑄 is conjugate to a finite subgroup of 𝑇 in 𝐿. In fact, without loss
of generality we can assume that 𝑄 ⊂ 𝑇 , moreoever 𝑄 ⊂ 𝑇 ∩ 𝐺. We show that this is in
fact an equality by showing that the reverse inclusion also holds. Let 𝑡𝜆 be an arbitrary
element of 𝑇 ∩ 𝐺. Then ⟨𝑡𝜆, 𝑄⟩ is a 𝑝-group of 𝐺 which must be equal to 𝑄 since it is a
Sylow 𝑝-subgroup of 𝐺. Thus 𝑡𝜆 ∈ 𝑄 and

𝑄 = 𝑇 ∩ 𝐺. (6.7)

Since |𝑄| > 1, Proposition 5.21 gives that 𝑁𝐺(𝑄) ⊂ 𝑁𝐿(𝑄) ⊂ 𝐻. So 𝑁𝐺(𝑄) ⊂ 𝐻 ∩ 𝐺.
Now take an arbitrarily chosen 𝑑𝜔𝑡𝜆 ∈ 𝐻 ∩ 𝐺 and 𝑡𝜇 ∈ 𝑄.

(𝑑𝜔𝑡𝜆)𝑡𝜇(𝑑𝜔𝑡𝜆)−1 = 𝑑𝜔(𝑡𝜆𝑡𝜇𝑡−𝜆)𝑑−1
𝜔

= 𝑑𝜔𝑡𝜇𝑑−1
𝜔 (by Lemma ??)

= 𝑡𝜎. (where 𝜎 = 𝜇𝜔−2, by Lemma ??)

Since it is a product of elements of 𝐺, 𝑡𝜎 ∈ 𝑇 ∩ 𝐺 = 𝑄 by (6.7). Thus 𝑑𝜔𝑡𝜆 ∈ 𝑁𝐺(𝑄)
and indeed the whole of 𝐻 ∩ 𝐺 is contained in 𝑁𝐺(𝑄) and

𝑁𝐺(𝑄) = 𝐻 ∩ 𝐺. (6.8)

We now define a map 𝜙 by,

𝜙 ∶ 𝑁𝐺(𝑄) ⟶ 𝐷, where 𝜙(𝑑𝜔𝑡𝜆) = 𝑑𝜔 ∀ 𝑑𝜔𝑡𝜆 ∈ 𝑁𝐺(𝑄).

Next we determine the kernel of 𝜙.

𝑘𝑒𝑟(𝜙) = {𝑑𝜔𝑡𝜆 ∈ 𝑁𝐺(𝑄) ∶ 𝜙(𝑑𝜔𝑡𝜆) = 𝐼𝐺}
= 𝑁𝐺(𝑄) ∩ 𝑇
= 𝐻 ∩ 𝐺 ∩ 𝑇 (by (6.8))
= 𝑇 ∩ 𝐺 = 𝑄. (by (6.7))

We show that 𝜙 is a group homomorphism. Take 𝑑𝜔𝑡𝜆, 𝑑𝜌𝑡𝜇 from 𝑁𝐺(𝑄).

𝜙(𝑑𝜔𝑡𝜆𝑑𝜌𝑡𝜇) = 𝜙(𝑑𝜔𝑑𝜌𝑡𝜎𝑡𝜇) (where 𝜎 = 𝜆𝜌2, by Lemma ??)
= 𝑑𝜔𝑑𝜌
= 𝜙(𝑑𝜔𝑡𝜆)𝜙(𝑑𝜌𝑡𝜇).

Thus by the First Isomorphism Theorem,

𝑁𝐺(𝑄)/𝑄 ≅ 𝜙(𝑁𝐺(𝑄)), (6.9)
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Since 𝑁𝐺(𝑄) is a finite group, it’s image under 𝜙 is thus a finite subgroup of 𝐷. Fur-
thermore, since 𝐷 ≅ 𝐹 ∗ (by Lemma ??), 𝜙(𝑁𝐺(𝑄)) is a cyclic group whose order divides
𝑝𝑚 − 1 and is therefore relatively prime to 𝑝, and by (6.9), so too is 𝑁𝐺(𝑄)/𝑄.

Let 𝑟 be the order of 𝑁𝐺(𝑄)/𝑄. Since it is cyclic, 𝑁𝐺(𝑄)/𝑄 is generated by a single
element, namely a coset of 𝑄 in 𝑁𝐺(𝑄), call it 𝑘𝑄. So |𝑘𝑄| = 𝑟. Observe that,

(𝑘𝑄)𝑟 = 𝑄,
𝑘𝑟𝑄 = 𝑄,

𝑘𝑟 ∈ 𝑄.
Since 𝑄 is elementary abelian, each of it’s non-trivial elements has order 𝑝, so 𝑘 has order
𝑟 or 𝑟𝑝. In either case, since gcd(𝑟, 𝑝) = 1, the order of 𝑘𝑝 is 𝑟. Let 𝐾 = ⟨𝑘𝑝⟩. Now |𝐾| = 𝑟
and

|𝑁𝐺(𝑄)| = 𝑟|𝑄|
= |𝐾||𝑄|
= |𝑄𝐾|. (since 𝑄 ∩ 𝐾 = 𝐼𝐺)

Thus,

𝑁𝐺(𝑄) = 𝑄𝐾. (6.10)

Now assume |𝐾| > |𝑍|. Since 𝐾 is abelian, it must be contained in some maximal
abelian group 𝐴 ∈ 𝔐. By part (iii), 𝐴 must also be a cyclic group whose order is relatively
prime to 𝑝.

Since 𝐴 is conjugate in 𝐿 to a subgroup of 𝐷, each non-central element of 𝐴 has exactly 2
fixed points on the projective line ℒ by Proposition 5.28. Let 𝐴 = ⟨𝑥⟩ and let 𝑃1 and 𝑃2
be the points fixed by 𝑥. We show by induction on 𝑛 that 𝑥𝑛 also fixes 𝑃1 and 𝑃2, for all
𝑛 ∈ ℤ+. We do this by assuming first that 𝑥𝑛−1 fixes 𝑃𝑖.

𝑥𝑛𝑃𝑖 = 𝑥(𝑥𝑛−1𝑃𝑖) = 𝑥(𝑃𝑖) = 𝑃𝑖.
The importance of this is that since each element of 𝐴 can be expressed as some power

of 𝑥, they must have the same two fixed points, namely 𝑃1 and 𝑃2. In other words,

𝐴 ⊂ 𝑆𝐿(𝑃𝑖), (𝑖 = 1 or 2) (6.11)

By Proposition 5.28(ii), each element of 𝑇 has a common fixed point 𝑃 and Stab(𝑃 ) = 𝐻.
Since 𝐾 ⊂ 𝐻, each element in 𝐾 fixes 𝑃 . Also, since 𝐾 ⊂ 𝐴, this 𝑃 must be equal to either
𝑃1 or 𝑃2. Therefore by (6.11), 𝐴 ⊂ Stab(𝑃 ) = 𝐻. We arrive at the following result:

𝐴 ⊂ 𝐻 ∩ 𝐺
= 𝑁𝐺(𝑄) (by (6.8))
= 𝑄𝐾. (by (6.10))

Furthermore, we get,

𝐴 = 𝑄𝐾 ∩ 𝐴
= 𝑄𝐾 ∩ 𝐴𝐾 (𝐾 ⊂ 𝐴 so 𝐴 = 𝐴𝐾)
= (𝑄 ∩ 𝐴)𝐾
= 𝐾 (𝑄 ∩ 𝐴 = 𝐼𝐺)
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Thus 𝐾 ∈ 𝔐.

For the duration of this paper, unless otherwise stated, 𝑄 will denote a Sylow 𝑝-subgroup
of 𝐺 and 𝐾 will be as described above.

6.3 Conjugacy of Maximal Abelian Subgroups
Definition 6.7. The set 𝒞𝑖 = {𝑥𝐴𝑖𝑥−1 ∶ 𝑥 ∈ 𝐺} is called the conjugacy class of 𝐴𝑖 ∈ 𝔐.

Definition 6.8. Let 𝐴∗
𝑖 be the non-central part of 𝐴𝑖 ∈ 𝔐, let 𝔐∗ be the set of all 𝐴∗

𝑖 and
let 𝒞∗

𝑖 be the conjugacy class of 𝐴∗
𝑖 .

For some 𝐴𝑖 ∈ 𝔐 and 𝐴∗
𝑖 ∈ 𝔐∗ let,

𝐶𝑖 = ⋃
𝑥∈𝐺

𝑥𝐴𝑖𝑥−1, and 𝐶∗
𝑖 = ⋃

𝑥∈𝐺
𝑥𝐴∗

𝑖𝑥−1.

In other words, 𝐶𝑖 denotes the set of elements of 𝐺 which belong to some element of 𝒞𝑖. It’s
evident that 𝐶∗

𝑖 = 𝐶𝑖 ∖ 𝑍 and that there is a 𝐶𝑖 corresponding to each 𝒞𝑖. Clearly we have
the relation,

|𝐶∗
𝑖 | = |𝐴∗

𝑖 ||𝒞∗
𝑖 |. (6.12)

Theorem 6.9. Let 𝐺 be a finite subgroup of 𝐿 and 𝑆 be a subset of 𝔐∗ containing exactly
one element from each of its conjugacy classes.

(i) The set of 𝐶∗
𝑖 form a partition of 𝐺∖𝑍. That is,

𝐺∖𝑍 = ⋃
𝐴∗

𝑖∈𝑆
𝐶∗

𝑖 , and 𝐶∗
𝑖 ∩ 𝐶∗

𝑗 = ∅, ∀ 𝑖 ≠ 𝑗.

(ii) |𝒞∗
𝑖 | = |𝒞𝑖|.

(iii) |𝒞𝑖| = [𝐺 ∶ 𝑁𝐺(𝐴𝑖)].

(iv)
|𝐺∖𝑍| = ∑

𝐴∗
𝑖∈𝑆

|𝐴∗
𝑖 |[𝐺 ∶ 𝑁𝐺(𝐴𝑖)].

Proof. (i) Define a relation ∼ on 𝔐∗ as follows:

𝐴∗
𝑖 ∼ 𝐴∗

𝑗 if 𝐴∗
𝑖 = 𝑥𝐴∗

𝑗𝑥−1 for some 𝑥 ∈ 𝐺.

If we choose 𝑥 ∈ 𝐴∗
𝑖 , then clearly 𝐴∗

𝑖 = 𝐴∗
𝑖𝑥𝑥−1 = 𝑥𝐴∗

𝑖𝑥−1, thus 𝐴∗
𝑖 ∼ 𝐴∗

𝑖 and ∼ is
reflexive.

If 𝐴∗
𝑖 ∼ 𝐴∗

𝑗, then ∃ 𝑥 ∈ 𝐺 such that,

𝐴∗
𝑖 = 𝑥𝐴∗

𝑗𝑥−1 ⟺ 𝑥−1𝐴∗
𝑖𝑥 = 𝐴∗

𝑗 ⟺ 𝐴∗
𝑗 = 𝑦𝐴∗

𝑖𝑦−1 for 𝑦 = 𝑥−1 ∈ 𝐺.
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Thus 𝐴∗
𝑗 ∼ 𝐴∗

𝑖 and ∼ is symmetric.

If 𝐴∗
𝑖 ∼ 𝐴∗

𝑗 and 𝐴∗
𝑗 ∼ 𝐴∗

𝑘, then ∃ 𝑥, 𝑦 ∈ 𝐺 such that,

𝐴∗
𝑖 = 𝑥𝐴∗

𝑗𝑥−1 and 𝐴∗
𝑗 = 𝑦𝐴∗

𝑘𝑦−1 ⇒ 𝐴∗
𝑖 = 𝑥𝑦𝐴∗

𝑘𝑦−1𝑥−1 = (𝑥𝑦)𝐴∗
𝑘(𝑥𝑦)−1.

Thus 𝐴∗
𝑖 ∼ 𝐴∗

𝑘 (since 𝑥𝑦 ∈ 𝐺), which shows that ∼ is transitive and moreover an equivalence
relation on 𝔐∗.

The equivalence class of 𝐴∗
𝑖 in 𝔐∗ therefore coincides with the set 𝒞∗

𝑖 = {𝑥𝐴∗
𝑖𝑥−1 ∶ 𝑥 ∈ 𝐺}.

Furthermore, this tells us that each 𝐴∗
𝑖 belongs to exactly one conjugacy class. Thus the

conjugacy classes 𝒞∗
𝑖 form a partition of 𝔐∗,

𝔐∗ = ⋃
𝐴∗

𝑖∈𝑆
𝒞∗

𝑖 , and 𝒞∗
𝑖 ∩ 𝒞∗

𝑗 = ∅, ∀ 𝑖 ≠ 𝑗.

Since the set of 𝒞∗
𝑖 are pairwise disjoint, it follows that the set of 𝐶∗

𝑖 are also pairwise
disjoint and we get the desired result,

𝐺∖𝑍 = ⋃
𝐴∗

𝑖∈𝑆
𝐶∗

𝑖 , and 𝐶∗
𝑖 ∩ 𝐶∗

𝑗 = ∅, ∀ 𝑖 ≠ 𝑗.

(ii) Let 𝑥𝐴𝑖𝑥−1 ∈ 𝒞𝑖 and 𝑥𝐴∗
𝑖𝑥−1 ∈ 𝒞∗

𝑖 . Since 𝑥𝐴𝑖𝑥−1∖𝑍 = 𝑥𝐴∗
𝑖𝑥−1, it is quite clear that,

𝑥𝐴𝑖𝑥−1 ∈ 𝒞𝑖 ⟺ 𝑥𝐴∗
𝑖𝑥−1 ∈ 𝒞∗

𝑖 .
Thus |𝒞∗

𝑖 | = |𝒞𝑖| as desired.

(iii) Now we define a map 𝜙 by:

𝜙 ∶ 𝒞𝑖 ⟶ 𝐺/𝑁𝐺(𝐴𝑖),
𝜙(𝑥𝐴𝑖𝑥−1) = 𝑥𝑁𝐺(𝐴𝑖). (∀ 𝑥 ∈ 𝐺, 𝐴𝑖 ∈ 𝔐)

Clearly 𝜙 is trivially surjective. We now show that it is both well-defined and injective.

𝑥𝑁𝐺(𝐴𝑖) = 𝑦𝑁𝐺(𝐴𝑖) ⟺ 𝑦−1𝑥𝑁𝐺(𝐴𝑖) = 𝑁𝐺(𝐴𝑖)
⟺ 𝑦−1𝑥 ∈ 𝑁𝐺(𝐴𝑖)
⟺ (𝑦−1𝑥)𝐴𝑖(𝑦−1𝑥)−1 = 𝐴𝑖
⟺ 𝑦−1𝑥𝐴𝑖𝑥−1𝑦 = 𝐴𝑖
⟺ 𝑥𝐴𝑖𝑥−1 = 𝑦𝐴𝑖𝑦−1.

Hence 𝜙 is well-defined and injective. This shows that 𝜙 is a bijection proving that
|𝒞𝑖| = [𝐺 ∶ 𝑁𝐺(𝐴𝑖)]. This is a crucial result which shows that the number of maximal
abelian subgroups conjugate to 𝐴𝑖 is equal to the index of the normaliser of 𝐴𝑖 in 𝐺.

(iv) This follows directly from parts (i), (ii) and (iii) and (6.12).

𝐺∖𝑍 = ⋃
𝐴∗

𝑖∈𝑆
𝐶∗

𝑖 , and 𝐶∗
𝑖 ∩ 𝐶∗

𝑗 = ∅, ∀ 𝑖 ≠ 𝑗,

|𝐺∖𝑍| = ∑
𝐴∗

𝑖∈𝑆
|𝐶∗

𝑖 | = ∑
𝐴∗

𝑖∈𝑆
|𝐴∗

𝑖 ||𝒞∗
𝑖 | = ∑

𝐴∗
𝑖∈𝑆

|𝐴∗
𝑖 ||𝒞𝑖|

= ∑
𝐴∗

𝑖∈𝑆
|𝐴∗

𝑖 |[𝐺 ∶ 𝑁𝐺(𝐴𝑖)].
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This theorem proves that the non-central parts of the maximal abelian subgroups form
a partition of the non-central part of 𝐺. This will serve as a powerful tool in decomposing
𝐺 and counting its elements.

6.4 Constructing The Class Equation
It is necessary to prove the following 2 short lemmas before we proceed further.

Lemma 6.10. 𝑁𝐺(𝐴) = 𝑁𝐺(𝐴∗).
Proof. (iii) Let 𝑥 ∈ 𝑁𝐺(𝐴∗). Take an arbitary 𝑎 ∈ 𝐴 = 𝐴∗ ∪ 𝑍. If 𝑎 ∈ 𝐴∗, then since
𝑥 ∈ 𝑁𝐺(𝐴∗), we have 𝑥𝑎𝑥−1 ∈ 𝐴∗ ⊂ 𝐴. If 𝑎 ∈ 𝑍, then 𝑥𝑧𝑥−1 = 𝑧𝑥𝑥−1 = 𝑧 ∈ 𝐴. Therefore
𝑥 is in the normaliser of 𝐴 and 𝑁𝐺(𝐴∗) ⊂ 𝑁𝐺(𝐴).

Conversely, take 𝑦 ∈ 𝑁𝐺(𝐴) and 𝑎 ∈ 𝐴∗. 𝑦𝑎𝑦−1 ∈ 𝐴 = 𝐴∗ ∪ 𝑍. If 𝑦𝑎𝑦−1 ∈ 𝑍, then

𝑦𝑎𝑦−1 = 𝑧, (some 𝑧 ∈ 𝑍)
𝑎 = 𝑦−1𝑧𝑦 = 𝑦−1𝑦𝑧 = 𝑧 ∉ 𝐴∗.

This contradicts the fact that 𝑎 ∈ 𝐴∗. Therefore 𝑦𝑎𝑦−1 ∈ 𝐴∗ and 𝑦 ∈ 𝑁𝐺(𝐴∗). Since 𝑦 was
chosen arbitrarily we get 𝑁𝐺(𝐴) ⊂ 𝑁𝐺(𝐴∗) and hence 𝑁𝐺(𝐴) = 𝑁𝐺(𝐴∗).

Lemma 6.11. 𝑁𝐺(𝑄 × 𝑍) = 𝑁𝐺(𝑄).
Proof. If 𝑝 = 2 then 𝑍 = 𝐼𝐺 and the result is trivial. Now assume 𝑝 ≠ 2. Thus |𝑍| = 2. Let
𝑥 and 𝑞1 be arbitrarily chosen elements of 𝑁𝐺(𝑄) and 𝑄 respectively.

𝑥𝑞1𝑥−1 = 𝑞2, (for some 𝑞2 ∈ 𝑄)
𝑥𝑞1𝑥−1𝑧1 = 𝑞2𝑧1,
𝑥𝑞1𝑧1𝑥−1 = 𝑞2𝑧1 ∈ 𝑄 × 𝑍.

Thus any element 𝑥 which is in 𝑁𝐺(𝑄) is also in 𝑁𝐺(𝑄×𝑍) so we have 𝑁𝐺(𝑄) ⊂ 𝑁𝐺(𝑄×𝑍).

Let 𝑞1𝑧1 be an arbitrarily chosen element of 𝑄 × 𝑍 such that 𝑞1 ∈ 𝑄 and 𝑧1 ∈ 𝑍. Now
let 𝑦 be an arbitrarily chosen element of 𝑁𝐺(𝑄 × 𝑍).

𝑦𝑞1𝑧1𝑦−1 = 𝑞2𝑧2 ∈ 𝑄 × 𝑍. (where 𝑞2 ∈ 𝑄 and 𝑧2 ∈ 𝑍)
Consider now the order of 𝑞1𝑧1 in 𝐺. Since 𝑝 ≠ 2, 𝑄 ∩ 𝑍 = 𝐼𝐺 and |𝑞1𝑧1| = |𝑞1||𝑧1|. Note

that 𝑞1𝑧1 and 𝑞2𝑧2 are conjugate in 𝐺, and thus their orders are equal. This means that
|𝑧1| = |𝑧2|, because otherwise 2 would divide one of them and not the other. Thus 𝑧1 = 𝑧2
and,

𝑦𝑞1𝑧1𝑦−1 = 𝑞2𝑧2 = 𝑞2𝑧1
𝑦𝑞1𝑦−1𝑧1 = 𝑞2𝑧1,

𝑦𝑞1𝑦−1 = 𝑞2 ∈ 𝑄
Hence 𝑦 ∈ 𝑁𝐺(𝑄). Furthermore, since 𝑦 was chosen arbitrarily, any element which is in
𝑁𝐺(𝑄 × 𝑍) is also in 𝑁𝐺(𝑄), so 𝑁𝐺(𝑄 × 𝑍) = 𝑁𝐺(𝑄) as desired.
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We now start to count the elements of the seperate components of 𝐺 and use the preceed-
ing 2 theorems to construct what will be an invaluable formula in determining the structure
of 𝐺, something we will call the Maximal Abelian Subgroup Class Equation of 𝐺.

First we spilt 𝔐 into the conjugacy classes of it’s elements. Theorem 6.6(iii) tells us that
every maximal abelian subgroup is either a cyclic subgroup whose order is relatively prime
to 𝑝 or of the form 𝑄 × 𝑍 where 𝑄 is a Sylow 𝑝-subgroup. Let 𝒞1, 𝒞2, ..., 𝒞𝑠, 𝒞𝑠+1, ..., 𝒞𝑠+𝑡
(where 𝑠, 𝑡 ∈ ℤ+) denote the conjugacy classes of the cyclic subgroups whose order is rela-
tively prime to 𝑝. Recall that part (iv) of Theorem 6.6 tells us that [𝑁𝐺(𝐴) ∶ 𝐴] = 1 or 2.
Let 𝐴𝑖 be a representative from each 𝒞𝑖 such that,

[𝑁𝐺(𝐴𝑖) ∶ 𝐴𝑖] = 1, (for 𝑖 ≤ 𝑠)

[𝑁𝐺(𝐴𝑖) ∶ 𝐴𝑖] = 2., (for 𝑠 < 𝑖 ≤ 𝑠 + 𝑡)
Now let 𝑄1 and 𝑄2 be any two Sylow 𝑝-subgroups of 𝐺. By the Second Sylow Theorem,

𝑄1 and 𝑄2 are conjugate to each other in 𝐺. That is, there exists a 𝑔 ∈ 𝐺 such that
𝑔𝑄1𝑔−1 = 𝑄2.

𝑔𝑄1𝑔−1 = 𝑄2 ⟺ 𝑔𝑄1𝑔−1𝑍 = 𝑄2𝑍
⟺ 𝑔𝑄1𝑍𝑔−1 = 𝑄2𝑍
⟺ 𝑔(𝑄1 × 𝑍)𝑔−1 = (𝑄2 × 𝑍). (by Corollary 3.21)

So 𝑄1 ×𝑍 and 𝑄2 ×𝑍 belong to the same conjugacy class, furthermore there is thus only
1 conjugacy class of elements of this form in 𝔐. Let 𝒞𝑄×𝑍 denote this conjugacy class and
let 𝑄×𝑍 be a representative from it. The following diagram provides a visual representation
of 𝐺 divided into it’s maximal abelian subgroups.

We can reformulate the counting formula in Theorem 6.9(iv) using the notation we have
introduced to show that it agrees with the intuitive approach that Fig 1 suggests.

|𝐺∖𝑍| = ∑
𝐴∗

𝑖∈𝑆
|𝐴∗

𝑖 |[𝐺 ∶ 𝑁𝐺(𝐴𝑖)] = ∑
𝐴∗

𝑖∈𝑆
|𝐶∗

𝑖 | = |𝐶∗
𝑄×𝑍| +

𝑠+𝑡
∑
𝑖=1

|𝐶∗
𝑖 |.

We are now able to begin to evaluate 𝐺. Firstly, let |𝑍| = 𝑒 and |𝐺| = 𝑒𝑔. We know
well by now that 𝑒 = 1 or 2 depending on whether 𝑝 equals 2 or not, and by Lagrange’s
Theorem, the order of a subgroup divides the order of the group, so 𝑒 divides |𝐺| since 𝑍 < 𝐺.

We consider the cyclic case first. Again, by Lagrange’s Theorem, since 𝑍 is a subgroup
of each 𝐴𝑖, 𝑒 divides |𝐴𝑖|. So set |𝐴𝑖| = 𝑒𝑔𝑖. Since 𝑍 ∉ 𝔐, each 𝐴𝑖 is therefore strictly larger
than 𝑍 and so each 𝑔𝑖 is an integer greater than or equal to 2.

To determine the order of each 𝐶𝑖, we return to the set 𝔐∗. The size of one represen-
tative of each class is,

|𝐴∗
𝑖 | = |𝐴𝑖∖𝑍| = 𝑒𝑔𝑖 − 𝑒 = 𝑒(𝑔𝑖 − 1).

The number of 𝐴∗
𝑖 in each conjugacy class 𝒞𝑖 for 𝑖 ≤ 𝑠 is thus,

|𝒞∗
𝑖 | = |𝒞𝑖| = [𝐺 ∶ 𝑁𝐺(𝐴𝑖)] = |𝐺|

|𝐴𝑖|
= 𝑒𝑔

𝑒𝑔𝑖
= 𝑔

𝑔𝑖
.
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Therefore the total number of elements of 𝐺 in the noncentral part of 𝐶𝑖 for 𝑖 ≤ 𝑠 is,
𝑠

∑
𝑖=1

|𝐶∗
𝑖 | =

𝑠
∑
𝑖=1

|𝐴∗
𝑖 ||𝒞∗

𝑖 | =
𝑠

∑
𝑖=1

𝑒𝑔(𝑔𝑖 − 1)
𝑔𝑖

. (6.13)

The number of 𝐴∗
𝑖 in each conjugacy class 𝒞𝑖 for 𝑠 < 𝑖 ≤ 𝑠 + 𝑡 is thus,

|𝒞∗
𝑖 | = |𝒞𝑖| = [𝐺 ∶ 𝑁𝐺(𝐴𝑖)] = |𝐺|

2|𝐴𝑖|
= 𝑒𝑔

2𝑒𝑔𝑖
= 𝑔

2𝑔𝑖
.

Therefore the total number of elements of 𝐺 in the noncentral part of 𝐶𝑖 for 𝑠 < 𝑖 ≤ 𝑠 + 𝑡 is,
𝑠+𝑡
∑

𝑖=𝑠+1
|𝐶∗

𝑖 | =
𝑠+𝑡
∑

𝑖=𝑠+1
|𝐴∗

𝑖 ||𝒞∗
𝑖 | =

𝑠+𝑡
∑

𝑖=𝑠+1

𝑒𝑔(𝑔𝑖 − 1)
2𝑔𝑖

. (6.14)

We next determine the order of 𝐶𝑄×𝑍. Let |𝑄| = 𝑞. If 𝑝 ∤ |𝐺| then 𝑞 = 1 and if 𝑝 = 0, then
we consider a Sylow 𝑝-subgroup to simply be 𝐼𝐺. So 𝑞 is always at least 1. Since 𝑍 < 𝐾,
we can let |𝐾| = 𝑒𝑘. Observe that if 𝐾 ∈ 𝔐, then by Theorem 6.6(v), 𝐾 = 𝐴𝑖 for some
0 < 𝑖 ≤ 𝑡 and 𝑘 = 𝑔𝑖. Recall that 𝑁𝐺(𝑄) = 𝑄𝐾 and so,

|𝑁𝐺(𝑄 × 𝑍)∗| = |𝑁𝐺(𝑄 × 𝑍)| (by Lemma 6.10)
= |𝑁𝐺(𝑄)| (by Lemma 6.11)
= |𝑄𝐾| = 𝑒𝑞𝑘.

Again we count the size and number of these maximal abelian groups.

|(𝑄 × 𝑍)∗| = |𝑄𝑍| − |𝑍| = 𝑒(𝑞 − 1).
Since there is only one conjugacy class of 𝑄 × 𝑍, the number of (𝑄 × 𝑍)∗ in 𝔐∗ is thus,

|𝒞∗
𝑄×𝑍| = |𝒞𝑄×𝑍| = [𝐺 ∶ 𝑁𝐺(𝑄 × 𝑍)] = |𝐺|

|𝑁𝐺(𝑄 × 𝑍)∗| = 𝑒𝑔
𝑒𝑞𝑘 = 𝑔

𝑞𝑘 .

Therefore the total number of elements of 𝐺 in the noncentral parts of each 𝑄 × 𝑍 is,

|𝐶∗
𝑄×𝑍| = |(𝑄 × 𝑍)∗||𝒞∗

𝑄×𝑍| = 𝑒𝑔(𝑞 − 1)
𝑞𝑘 . (6.15)

We now sum together (6.13), (6.14) and (6.15) to create the Maximal Abelian Sub-
group Class Equation of 𝐺.

|𝐺∖𝑍| = |𝐶∗
𝑄×𝑍| +

𝑠+𝑡
∑
𝑖=1

|𝐶∗
𝑖 |,

|𝐺∖𝑍| = |(𝑄 × 𝑍)∗||𝒞∗
𝑄×𝑍| +

𝑠
∑
𝑖=1

|𝐴∗
𝑖 ||𝒞∗

𝑖 | +
𝑠+𝑡
∑

𝑖=𝑠+1
|𝐴∗

𝑖 ||𝒞∗
𝑖 |,

𝑒𝑔 − 𝑒 = 𝑒𝑔(𝑞 − 1)
𝑞𝑘 +

𝑠
∑
𝑖=1

𝑒𝑔(𝑔𝑖 − 1)
𝑔𝑖

+
𝑠+𝑡
∑

𝑖=𝑠+1

𝑒𝑔(𝑔𝑖 − 1)
2𝑔𝑖

,

1 = 1
𝑔 + 𝑞 − 1

𝑞𝑘 +
𝑠

∑
𝑖=1

𝑔𝑖 − 1
𝑔𝑖

+
𝑠+𝑡
∑

𝑖=𝑠+1

𝑔𝑖 − 1
2𝑔𝑖

. (6.16)
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Since 𝑔, 𝑘, 𝑞 ∈ ℤ+ this implies that,

1
𝑔 > 0 and 𝑞 − 1

𝑞𝑘 ≥ 0.

Also, since 𝑔𝑖 ≥ 2 for 1 ≤ 𝑖 ≤ 𝑠 + 𝑡, we have,

𝑔𝑖 − 1
𝑔𝑖

≥ 1
2,

𝑠
∑
𝑖=1

𝑔𝑖 − 1
𝑔𝑖

≥ 𝑠
2 and

𝑠+𝑡
∑

𝑖=𝑠+1

𝑔𝑖 − 1
2𝑔𝑖

≥ 𝑡
4.

Thus we can find a lower bound for (6.16) which limits the possible number of conjugacy
classes somewhat,

1 > 𝑠
2 + 𝑡

4 .

There are only 6 possible different pairs of values which 𝑠 and 𝑡 can take:

Case I II III IV V VI

𝑠 1 1 0 0 0 0
𝑡 0 1 0 1 2 3

Each case will be examined individually in the next chapter.
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Chapter 7

Dickson’s Classification
Theorem for finite subgroups of
SL2(𝐹)

7.1 Five Lemmas
Before we detemine the structure of 𝐺 in each of the 6 cases, it is necessary to prove a
number of lemmas which will be used.

Lemma 7.1. Let 𝐻 be a proper subgroup of a 𝑝-group 𝐺. Then 𝐻 ⊊ 𝑁𝐺(𝐻).
Proof. Let 𝑆 denote the set of left cosets of 𝐻 in 𝐺. That is,

𝑆 = {𝑥𝐻 ∶ 𝑥 ∈ 𝐺}, and |𝑆| = [𝐺 ∶ 𝐻] = 𝑝𝑘. (for some 𝑘 ≥ 1)

Consider the action of 𝐻 on 𝑆 by left multiplication. We calculate the stabiliser of
𝑥𝐻 ∈ 𝑆 in 𝐻.

Stab(𝑥𝐻) = {𝑦 ∈ 𝐻 ∶ 𝑦𝑥𝐻 = 𝑥𝐻}
= {𝑦 ∈ 𝐻 ∶ 𝑥−1𝑦𝑥 ∈ 𝐻}.

If 𝑥 ∈ 𝐻 then 𝑥−1𝑦𝑥 ∈ 𝐻 for all 𝑦 ∈ 𝐻. Thus the Stab(𝑥𝐻) = 𝐻 and by the Orbit-
Stabiliser Theorem,

|Orb(𝑥𝐻)| = [𝐻 ∶ Stab(𝑥𝐻)] = 1.

Observe that,

𝑆 = ⋃
𝑥𝐻∈𝑆

Orb(𝑥𝐻),

where the orbits are pairwise disjoint. Now since 𝑝 divides |𝑆|, 𝑝 divides the sum of all
the orbit sizes. Furthermore, since each orbit size is 1 or a multiple of 𝑝, there must be at
least 𝑝 elements of 𝑆 which have an orbit of 1. In particular, there exists an 𝑥1𝐻 ∈ 𝑆 which
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has an orbit of 1 and 𝑥1 ∉ 𝐻. That is,

𝑦𝑥1𝐻 = 𝑥1𝐻, (∀𝑦 ∈ 𝐻)
𝑥−1

1 𝑦𝑥1 ∈ 𝐻,
𝑥−1

1 𝐻𝑥1 ⊂ 𝐻,
𝑥1 ∈ 𝑁𝐺(𝐻)∖𝐻.

Lemma 7.2. Let 𝑄 be a Sylow 𝑝-subgroup and 𝐾 a maximal abelian subgroup of 𝐺 such
that 𝑁𝐺(𝑄) = 𝑄𝐾 and 𝑄∩𝐾 = {𝐼𝐺}. If [𝑁𝐺(𝐾) ∶ 𝐾] = 2, then 𝑄 is not a normal subgroup
of 𝐺.

Proof. The approach here is proof by contradiction, so we begin by assuming that 𝑄 ⊲ 𝐺.
Thus 𝑁𝐺(𝑄) = 𝐺 and 𝑁𝐺(𝐾) ⊂ 𝑁𝐺(𝑄). Consider the natural homomorphism of 𝑁𝐺(𝑄)
onto 𝑁𝐺(𝑄)/𝑄,

𝜙 ∶ 𝑁𝐺(𝑄) ⟶ 𝑁𝐺(𝑄)/𝑄,
𝜙(𝑥) = 𝑥𝑄,

𝑘𝑒𝑟(𝜙) = {𝑥 ∈ 𝑁𝐺(𝑄) ∶ 𝜙(𝑥) = 𝐼𝐺𝑄} = 𝑄.
Let 𝜙′ be the restiction of 𝜙 to 𝑁𝐺(𝐾):

𝜙′ = 𝜙|𝑁𝐺(𝐾) ∶ 𝑁𝐺(𝐾) ⟶ 𝑁𝐺(𝑄)/𝑄.
Thus 𝑘𝑒𝑟(𝜙′) = 𝑘𝑒𝑟(𝜙) ∩ 𝑁𝐺(𝐾) = 𝑄 ∩ 𝑁𝐺(𝐾). By the 1st Isomorphism Theorem,

Im(𝜙′) ≅ 𝑁𝐺(𝐾)/𝑘𝑒𝑟(𝜙′),
𝑁𝐺(𝑄)/𝑄 ≅ 𝑁𝐺(𝐾)/(𝑄 ∩ 𝑁𝐺(𝐾)),

𝐾 ≅ 𝑁𝐺(𝐾)/(𝑄 ∩ 𝑁𝐺(𝐾)), (𝑁𝐺(𝑄) = 𝑄𝐾)
|𝑄 ∩ 𝑁𝐺(𝐾)| = [𝑁𝐺(𝐾) ∶ 𝐾] = 2. (by assumption)

So 2 divides |𝑄|, which implies that 2 ∤ |𝐾| since 𝑄 ∩ 𝐾 = {𝐼𝐺}. Moreover, |𝑄 ∩ 𝑁𝐺(𝐾)|
and |𝐾| are relatively prime.

Take 𝑎 ∈ 𝑘𝑒𝑟(𝜙′) = 𝑄 ∩ 𝑁𝐺(𝐾) and 𝑏 ∈ 𝑁𝐺(𝐾).
𝜙′(𝑏𝑎𝑏−1) = 𝜙′(𝑏)𝜙′(𝑎)𝜙′(𝑏−1)

= 𝜙′(𝑏)(𝐼𝐺𝑄)𝜙′(𝑏−1)
= 𝜙′(𝑏)𝜙′(𝑏−1)(𝐼𝐺𝑄) = 𝐼𝐺𝑄.

Thus 𝑏𝑎𝑏−1 ∈ 𝑘𝑒𝑟(𝜙′) = 𝑄 ∩ 𝑁𝐺(𝐾) and so 𝑄 ∩ 𝑁𝐺(𝐾) ⊲ 𝑁𝐺(𝐾).

Now let 𝑥 ∈ 𝑄 ∩ 𝑁𝐺(𝐾) and 𝑦 ∈ 𝐾. Notice that both 𝑥 and 𝑦 are elements of 𝑁𝐺(𝐾),

𝑥𝑦𝑥−1𝑦−1 = (𝑥𝑦𝑥−1)𝑦−1 ∈ 𝐾, (since 𝐾 ⊲ 𝑁𝐺(𝐾))
𝑥𝑦𝑥−1𝑦−1 = 𝑥(𝑦𝑥−1𝑦−1) ∈ 𝑄 ∩ 𝑁𝐺(𝐾), (since 𝑄 ∩ 𝑁𝐺(𝐾) ⊲ 𝑁𝐺(𝐾))
𝑥𝑦𝑥−1𝑦−1 ∈ 𝐾 ∩ (𝑄 ∩ 𝑁𝐺(𝐾))

= 𝐼𝐺, (since gcd(|𝑄 ∩ 𝑁𝐺(𝐾)|, |𝐾|) = 1)
𝑥𝑦 = 𝑦𝑥.
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Therefore (𝑄 ∩ 𝑁𝐺(𝐾)) × 𝐾 is an abelian subgroup of which 𝐾 is a proper subgroup.
This contradicts the fact that 𝐾 is a maximal abelian subgroup, thus 𝑄 is not a normal
subgroup of 𝐺.

Lemma 7.3. Let 𝑝 be the prime characteristic of 𝐹 and let 𝑞 = 𝑝𝑘 for some 𝑘 > 0. Set,

𝑅 = {𝜆 ∈ 𝐹 ∶ 𝜆𝑞 − 𝜆 = 0}. (7.1)

Then 𝑅 is a subfield of 𝐹 .

Proof. Since 𝑅 is a subset of 𝐹 it suffices to show that the following 3 criteria are met:

(i) 0, 1 ∈ 𝑅.
(ii) If 𝜆1, 𝜆2 ∈ 𝑅, then 𝜆1 − 𝜆2 ∈ 𝑅.
(iii) If 𝜆1, 𝜆2 ∈ 𝑅 and 𝜆1 ≠ 0 ≠ 𝜆2, then 𝜆1𝜆−1

2 ∈ 𝑅.

We see immediately that (i) is satified. Since 𝑝 is the characteristic of 𝐹 , any coeffiecients
which are a multiple of 𝑝 vanish. We get,

(𝜆1 − 𝜆2)𝑞 = (𝜆𝑝
1 − 𝜆𝑝

2)𝑝𝑘−1 = ... = 𝜆𝑞
1 − 𝜆𝑞

2 = 𝜆1 − 𝜆2.
Thus 𝜆1 − 𝜆2 ∈ 𝑅 and (ii) is also satisifed. Finally observe that if 𝜆2 is a non-zero

element of 𝑅, then 𝜆−1
2 = 𝜆−𝑞

2 and,

(𝜆1𝜆−1
2 )𝑞 = 𝜆𝑞

1𝜆−𝑞
2 = 𝜆1𝜆−1

2 .
So 𝜆1𝜆−1

2 ∈ 𝑅 and 𝑅 is a subfield of 𝐹 .

Each finite field is uniquely determined up to isomorphism by the number of elements it
contains [?, p.227]. Since the 𝑅 defined in (7.1) has 𝑞 elements, from now on when we use
the notation 𝔽𝑞 to denote a field of 𝑞 elements, we shall actually mean,

𝔽𝑞 = 𝑅 ⊂ 𝐹. (7.2)

Lemma 7.4. Let 𝔽𝑞 be the field of 𝑞 elements, where 𝑞 is the power of a prime. The order
of 𝐺𝐿(2, 𝔽𝑞) is (𝑞2 − 1)(𝑞2 − 𝑞) and the order of SL2(𝔽𝑞) is 𝑞(𝑞2 − 1).
Proof. In order to prove this, we again take a geometric viewpoint. Recall that 𝐺𝐿(2, 𝔽𝑞)
is the group of 2 x 2 invertible matrices over 𝔽𝑞 under ordinary matrix multiplication. The
order of 𝐺𝐿(2, 𝔽𝑞) is thus equal to the number of ordered pairs {𝑢, 𝑣} of linearly independent
vectors in a 2-dimensional vector space over 𝔽𝑞.

There are clearly 𝑞2 different vectors in the 2-dimensional vector space over 𝔽𝑞. The only
restriction on the first vector 𝑢, is that it must be non-zero, so there are (𝑞2 − 1) choices for
𝑢. To ensure the second vector 𝑣 is linearly independent of 𝑢, it must not be of the form
𝛼𝑢, where 𝛼 ∈ 𝔽𝑞. Since there are 𝑞 choices for 𝛼, there are (𝑞2 − 𝑞) choices for 𝑣.

Thus the order of 𝐺𝐿(2, 𝔽𝑞) is the product of the number of choices of 𝑢 and the num-
ber of choices of 𝑣, that is, (𝑞2 − 1)(𝑞2 − 𝑞) as required. Now consider the map 𝜙 defined
as,

𝜙 ∶ 𝐺𝐿(2, 𝔽𝑞) ⟶ 𝔽∗
𝑞, where 𝜙(𝑥) = det(𝑥), ∀ 𝑥 ∈ 𝐺𝐿(2, 𝔽𝑞).
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Next we determine the kernel of 𝜙.
𝑘𝑒𝑟(𝜙) = {𝐺𝐿(2, 𝔽𝑞) ∶ det(𝑥) = 1} = SL2(𝔽𝑞).

We show that 𝜙 is a group homomorphism. Take 𝑥, 𝑦 ∈ 𝐺𝐿(2, 𝔽𝑞),
𝜙(𝑥𝑦) = det(𝑥𝑦) = det(𝑥)det(𝑦) = 𝜙(𝑥)𝜙(𝑦).

Clearly 𝜙 is surjective, since 𝛼 ∈ 𝔽∗
𝑞 is the determinant of [𝛼 0

0 1] ∈ 𝐺𝐿(2, 𝔽𝑞). Therefore
by the First Isomorphism Theorem,

𝐺𝐿(2, 𝔽𝑞)/ SL2(𝔽𝑞) ≅ 𝔽∗
𝑞.

Thus,

| SL2(𝔽𝑞)| = |𝐺𝐿(2, 𝔽𝑞)|
|𝔽∗𝑞| = (𝑞2 − 1)(𝑞2 − 𝑞)

𝑞 − 1 = 𝑞(𝑞2 − 1).

Lemma 7.5. Let 𝑁 be a normal subgroup of a group 𝐺 and let 𝐻 be a subgroup of 𝐺 which
contains 𝑁 .Then,

𝐻/𝑁 ⊲ 𝐺/𝑁 ⟺ 𝐻 ⊲ 𝐺
Proof. If 𝐻 ⊲ 𝐺, then it follows from the Third Isomorphism Theorem that 𝐻/𝑁 ⊲ 𝐺/𝑁 .
Conversely, assume that 𝐻/𝑁 is normal in 𝐺/𝑁 . Let 𝑥 be an arbitrary element of 𝐺 and ℎ
be an arbitrary element of 𝐻. Since 𝐻/𝑁 is normal in 𝐺/𝑁 we have,

𝑥ℎ𝑥−1𝑁 = (𝑥𝑁)(ℎ𝑁)(𝑥−1𝑁) = (𝑥𝑁)(ℎ𝑁)(𝑥𝑁)−1 ∈ 𝐻/𝑁.
Thus 𝑥ℎ𝑥−1 ∈ 𝐻. Since 𝑥 and ℎ were chosen arbitrarily, we have that 𝐻 ⊲ 𝐺.

7.2 The Six Cases
We now address individually the 6 possible combinations of 𝑠 and 𝑡 in (6.16) and determine
the structure of 𝐺 in each case.

Case I:

Claim: In this case, the Sylow 𝑝-subgroup 𝑄 is different from 𝐺 and is an elementary
abelian normal subgroup of 𝐺. The factor group 𝐺/𝑄 is a cyclic group whose order is
relatively prime to 𝑝.

Proof. Here, 𝑠 = 1 and 𝑡 = 0. Equation (6.16) simplifies to:

1 = 1
𝑔 + 𝑞 − 1

𝑞𝑘 + 𝑔1 − 1
𝑔1

,

1 = 1
𝑔 + 1

𝑘 − 1
𝑞𝑘 + 1 − 1

𝑔1
,

1
𝑞𝑘 + 1

𝑔1
= 1

𝑔 + 1
𝑘 . (7.3)
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Case Ia: 𝑞 = 1𝑞 = 1𝑞 = 1. Here we have 𝑄 = 𝐼𝐺 and is trivially an elementary abelian normal sub-
group of 𝐺. Equation (7.3) gives 𝑔 = 𝑔1, thus 𝐺/𝑄 = 𝐺 = 𝐴1, which indeed is a cyclic
group whose order is relatively prime to 𝑝.

Case Ib: 𝑞 > 1𝑞 > 1𝑞 > 1. If 𝑘 = 1 then (7.3) gives,
1
𝑞 + 1

𝑔1
= 1

𝑔 + 1 > 1.

But since both 1/𝑞 and 1/𝑔𝑖 are at most 1/2 each, this is a contradiction. Thus 𝑘 > 1. This
means that |𝐾| = 𝑒𝑘 > 𝑒 = |𝑍|, so 𝑘 = 𝑔1 by Theorem 6.6(v). Equation (7.3) now gives
𝑞𝑘 = 𝑔.

|𝐺| = 𝑒𝑔 = 𝑒𝑞𝑘 = |𝑁𝐺(𝑄)|.
Thus 𝐺 = 𝑁𝐺(𝑄) and so 𝑄 ⊲ 𝐺. Therefore 𝑄 ≠ 𝐺 and is an elementary abelian normal
subgroup of 𝐺. Also,

𝐺/𝑄 = 𝑁𝐺(𝑄)/𝑄 ≅ 𝐾 = 𝐴1.
Thus 𝐺/𝑄 is a cyclic group whose order is relatively prime to 𝑝.

Case II:

Claim: The order of 𝐺 is relatively prime to 𝑝 and either 𝐺 ≅ SL2(3) or 𝐺 is the group of
order 4𝑛, where 𝑛 is odd, defined by the presentation:

⟨ 𝑥, 𝑦 | 𝑥𝑛 = 𝑦2, 𝑦𝑥𝑦−1 = 𝑥−1 ⟩.

Proof. Here, 𝑠 = 1 = 𝑡. Equation (6.16) simplifies to:

1 = 1
𝑔 + 𝑞 − 1

𝑞𝑘 + 𝑔1 − 1
𝑔1

+ 𝑔2 − 1
2𝑔2

,

1 = 1
𝑔 + 𝑞 − 1

𝑞𝑘 + 1 − 1
𝑔1

+ 1
2 − 1

2𝑔2
,

1
𝑔1

+ 1
2𝑔2

= 1
2 + 1

𝑔 + 𝑞 − 1
𝑞𝑘 . (7.4)

First assume that 𝑞 > 1. This means (𝑞 − 1)/𝑞𝑘 ≥ 1/2𝑘 and consequently we bound
(7.4) from below:

1
2𝑔2

= 1
2 − 1

𝑔1
+ 1

𝑔 + 𝑞 − 1
𝑞𝑘 > 1

2𝑘 .

Thus 𝑘 > 𝑔2 ≥ 2. So 𝐾 ∈ 𝔐 and 𝑘 = 𝑔𝑖 for some 𝑖. Since it is strictly greater than 𝑔2,
we have 𝑘 = 𝑔1. Equation (7.4) now becomes

1
𝑔1

+ 1
2𝑔2

= 1
2 + 1

𝑔 + 𝑞 − 1
𝑞𝑔1

,
1
𝑔1

+ 1
2𝑔2

> 1
2 + 1

2𝑔1
,

1
4 + 1

4 ≥ 1
2𝑔1

+ 1
2𝑔2

> 1
2.
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This contradiction disproves the assumption that 𝑞 > 1, so we have that 𝑞 = 1. This
means that 𝑄, a Sylow 𝑝-subgroup of 𝐺, is simply the identity element and so |𝐺| is relatively
prime to 𝑝. Also, Equation (7.4) now reduces to:

1
𝑔1

+ 1
2𝑔2

= 1
2 + 1

𝑔 . (7.5)

If 𝑔1 ≥ 4 we get

1
2𝑔2

= 1
2 + 1

𝑔 − 1
𝑔1

> 1
4.

Since 𝑔2 > 1 this gives a contradiction and thus 𝑔1 < 4. We now have two seperate cases
to consider.

Case IIa: 𝑔1 = 2𝑔1 = 2𝑔1 = 2. Equation (7.5) becomes

1
2𝑔2

= 1
𝑔 , ⟹ 𝑔 = 2𝑔2.

If 𝑒 = 1, then 𝑝 = 2. Also since 𝑞 = 1, 2 does not divide |𝐺|, but |𝐺| = 𝑒𝑔 = 𝑒2𝑔2 which
is a contradiction. So 𝑒 = 2 and 𝑝 ≠ 2. We now have:

|𝑁𝐺(𝐴2)| = 2|𝐴2| = 2𝑒𝑔2 = 𝑒𝑔 = |𝐺|, (since 𝑠 + 𝑡 = 2)
|𝑁𝐺(𝐴1)| = |𝐴1| = 𝑒𝑔1 = 4. (since 𝑠 = 1)

Thus 𝐺 = 𝑁𝐺(𝐴2), that is 𝐴2 ⊲ 𝐺.

By Corollary 3.11, 𝐴1 is contained in a Sylow 2-subgroup of 𝐺, call it 𝑆. If 𝑆 is strictly
larger than 𝐴1, then by Lemma 7.1, 𝐴1 ⊊ 𝑁𝑆(𝐴1) ⊂ 𝑁𝐺(𝐴1). Since 𝐴1 = 𝑁𝐺(𝐴1) we
conclude that 𝐴1 is a Sylow 2-subgroup of 𝐺. This means that 8 does not divide |𝐺| = 4𝑔2
and so 𝑔2 = 𝑛, where 𝑛 is odd.

Since 𝐴2 is cyclic it is generated by a single element, so let 𝐴2 = ⟨𝑥⟩ and thus 𝑥2𝑛 = 𝐼𝐺.
Recall that because [𝑁𝐺(𝐴2) ∶ 𝐴2] = 2, Theorem 6.6(iv) tells us that there exists a
𝑦 ∈ 𝑁𝐺(𝐴2)∖𝐴2 such that 𝑦𝑥𝑦−1 = 𝑥−1.

Recall from Chapter 2 that the number of 𝐴𝑖 in each conjugacy class 𝒞𝑖 is equal to
[𝐺 ∶ 𝑁𝐺(𝐴𝑖)] so,

|𝒞2| = [𝐺 ∶ 𝑁𝐺(𝐴2)] = 1.

Due to the fact that 𝑦 belongs to some maximal abelian subgroup of 𝐺, and since 𝑦 ∉ 𝐴2
and |𝒞2| = 1, it must be that 𝑦 belongs to 𝐴1 or one of its conjugate subgroups. Thus 𝑦 has
an order which divides |𝐴1| = 4 and since the only elements of order 1 and 2 lie in 𝑍, the
order of 𝑦 is 4. Furthermore, both 𝑥𝑛 and 𝑦2 have order 2. Recalling that 𝐺 has at most 1
element of order 2, this gives the relation 𝑥𝑛 = 𝑦2.

Let 𝐻 be the group generated by 𝑥 and 𝑦 and the above relations:

𝐻 = ⟨ 𝑥, 𝑦 | 𝑥𝑛 = 𝑦2, 𝑦𝑥𝑦−1 = 𝑥−1⟩.
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Notice that the second relation gives that 𝑦𝑥𝑛𝑦−1 = 𝑥−𝑛, so

𝑥−𝑛 = 𝑦𝑥𝑛𝑦−1 = 𝑦𝑦2𝑦−1 = 𝑦2 = 𝑥𝑛.

This shows that 𝑦4 = 𝑥2𝑛 = 𝐼𝐺 and that 𝐻 is finite. Moreoever,

𝐻 = {𝑥𝑘, 𝑥𝑘𝑦 ∶ 0 < 𝑘 ≤ 2𝑛}.

Thus |𝐻| = 4𝑛 = |𝐺| and 𝐻 = 𝐺.

Case IIb: 𝑔1 = 3𝑔1 = 3𝑔1 = 3. Equation (7.5) becomes

1
2𝑔2

= 1
6 + 1

𝑔 > 1
6.

Therefore 𝑔2 = 2 and 𝑔 = 12. Again, since 𝑞 = 1 and 2 divides |𝐺|, we have 𝑝 ≠ 2 and so
𝑒 = 2. Thus we have,

|𝐺| = 𝑒𝑔 = 24, |𝐴1| = 𝑒𝑔1 = 6, |𝐴2| = 𝑒𝑔2 = 4.

Again we determine the number of maximal abelian subgroups in each conjugacy class.

|𝒞1| = [𝐺 ∶ 𝑁𝐺(𝐴1)] = |𝐺|
|𝐴1| = 24

6 = 4,

|𝒞2| = [𝐺 ∶ 𝑁𝐺(𝐴2)] = |𝐺|
2|𝐴2| = 24

8 = 3.
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The figure below shows 𝐺 divided into it’s maximal abelian subgroups:
Let 𝐴2 = ⟨𝑥⟩. By Theorem 6.6(iv), there is an element 𝑦 ∈ 𝑁𝐺(𝐴2)∖𝐴2 such that

𝑦𝑥𝑦−1 = 𝑥−1. Since 𝑁𝐺(𝐴2) has order 8, the order of 𝑦 must divide 8. The order of 𝑦
cannot be 8 since 𝑁𝐺(𝐴2) is not cyclic and the only elements with order 1 or 2 are found in
𝑍, thus 𝑦 has order 4. By the uniqueness of the element of order 2, we have 𝑥2 = 𝑦2. So

𝑁𝐺(𝐴2) = ⟨𝑥, 𝑦 | 𝑥2 = 𝑦2, 𝑦𝑥𝑦−1 = 𝑥−1⟩.

For simplicity let 𝑁 = 𝑁𝐺(𝐴2) . Since |𝐴1| = 6, the only elements in 𝐶1 with order 2𝑘 are
those in 𝑍, so every element of 𝐺 with order 2𝑘 must belong to 𝐶2. Since 𝐶2 has order 8
it is equal to 𝑁 because each element of 𝑁 has order 2𝑘. Furthermore, 𝑁 is thus a unique
Sylow 2-subgroup of 𝐺 and by Corollary 3.10, we have 𝑁 ⊲ 𝐺.

Now consider the quotient group 𝐺/𝑁 , that is the set of left (or right) cosets of 𝑁 in
𝐺.

𝐺/𝑁 = {𝑁, 𝑟𝑁, 𝑟2𝑁} ≅ ⟨𝑟⟩ ≅ ℤ3,

where 𝑟 is some element of 𝐺∖𝑁 with order 3. Without loss of generality we may regard 𝑟
to be a generator of 𝐻, where 𝐻 is the cyclic subgroup of 𝐴1 of order 3.

Let 𝐻 act on 𝑁 by conjugation. Since |𝐻| = 3 the orbit of 𝑥 ∈ 𝑁 has size 1 or 3.

Orb(𝑥) = {𝑟𝑘𝑥𝑟−𝑘 ∶ 𝑟𝑘 ∈ 𝐻}.

Since 𝐻 is not contained in the centraliser of 𝑥 we conclude that the orbit of 𝑥 has size
3. Let 𝐴2, 𝐴′

2 and 𝐴″
2 be the 3 elements of 𝒞2. Without loss of generality we may assume

𝑦 ∈ 𝐴′
2 and consequently 𝑥𝑦 ∈ 𝐴″

2 . Using the two relations between 𝑥 and 𝑦 we observe
that,

(𝑥𝑦)−1 = 𝑦−1𝑥−1 = 𝑦−1(𝑦𝑥𝑦−1) = 𝑥𝑦−1 = 𝑥−1𝑥2𝑦−1 = 𝑥−1𝑦 = 𝑦𝑥

The elements of 𝑍 are fixed points under this group action and the remaining 6 elements
of 𝑁 form 2 orbit cycles of order 3, with each cycle containing exactly one element from the
noncentral parts of 𝐴2, 𝐴′

2 and 𝐴″
2 in some order. If 𝑦 inverts 𝑥, then 𝑦 inverts all powers

of 𝑥 including 𝑥−1. Also, if 𝑦 inverts 𝑥, then 𝑦−1 inverts 𝑥−1 and thus inverts 𝑥 also. So
the 2 relations we have established between 𝑥 and 𝑦 actually hold for any pair of elements
of 𝑁 ∖𝑍 which belong to different elements of 𝔐. Therefore without loss of generality, we
may assume that 𝑥 and 𝑦 are in the same orbit cycle and that 𝑟𝑥𝑟−1 = 𝑦. Fig 3 shows that
there are only 2 elements which could complete this cycle, 𝑥𝑦 and 𝑦𝑥. If 𝑟𝑦𝑟−1 = 𝑥𝑦, then
we have the following 3 relations on 𝐺.

𝑟𝑥𝑟−1 = 𝑦, 𝑟𝑦𝑟−1 = 𝑥𝑦, 𝑟𝑥𝑦𝑥−1 = 𝑥. (7.6)

Otherwise 𝑟𝑦𝑟−1 = 𝑦𝑥. In this case, consider the orbit of 𝑥 under conjugation by 𝑟2

instead. This gives the same orbit cycle but in the opposite direction:

𝑟2𝑥𝑟−2 = 𝑦𝑥, 𝑟2𝑦𝑥𝑟−2 = 𝑦, 𝑟2𝑦𝑟−2 = 𝑥.

Observe that 𝑥(𝑦𝑥) = 𝑥(𝑥−1𝑦) = 𝑦. Thus without loss of generality we can rename 𝑟2 as 𝑟,
𝑦𝑥 as 𝑦 and 𝑦 as 𝑥𝑦. Notice that this now gives the same relations as in (7.6). Since 𝑥 and 𝑦
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generate a group of order 8 and 𝑟 has order 3, the group given by the following presentation
has order at most 24 and is thus a presentation of 𝐺.

⟨𝑥, 𝑦, 𝑟 | 𝑥2 = 𝑦2, 𝑦𝑥𝑦−1 = 𝑥−1, 𝑟3 = 𝐼, 𝑟𝑥𝑟−1 = 𝑦, 𝑟𝑦𝑟−1 = 𝑥𝑦, 𝑟𝑥𝑦𝑟−1 = 𝑥⟩,

By Lemma 7.4, we observe that the order of SL2(3) is 3(32 − 1) = 24. Now consider the
following the elements of SL2(3):

𝑎 = [1 1
1 2] , 𝑏 = [0 2

1 0] , 𝑐 = [2 1
2 0] .

One can verify easily that each of the following relations hold:

𝑎2 = 𝑏2, 𝑏𝑎𝑏−1 = 𝑎−1, 𝑐3 = 𝐼,
𝑐𝑎𝑐−1 = 𝑏, 𝑐𝑏𝑐−1 = 𝑎𝑏, 𝑐𝑎𝑏𝑐−1 = 𝑎.

Since 𝐺 and SL2(3) have the same order and since their respective generators satisfy the
corresponding relations, there is an isomorphism mapping 𝑥 ↦ 𝑎, 𝑦 ↦ 𝑏 and 𝑟 ↦ 𝑐. Thus,

𝐺 = ⟨𝑥, 𝑦, 𝑟⟩ ≅ ⟨𝑎, 𝑏, 𝑐⟩ = SL2(3).

Case III:

Claim: We have 𝐺 = 𝑄 × 𝑍.

Proof. Here, 𝑠 = 0 = 𝑡. Equation (6.16) simplifies to:

1 = 1
𝑔 + 𝑞 − 1

𝑞𝑘 ,

1 = 1
𝑔 + 1

𝑘 − 1
𝑞𝑘 ,

1 + 1
𝑞𝑘 = 1

𝑔 + 1
𝑘 . (7.7)

Since 𝑠 = 0 = 𝑡, there are no cyclic maximal abelian subgroups whose order is relatively
prime to 𝑝, so 𝐾 ∉ 𝔐. Then by Theorem 6.6(v) we have,

𝑒𝑘 = |𝐾| ≤ |𝑍| = 𝑒.

Thus 𝑘 = 1 and equation (7.7) reduces to 1/𝑞 = 1/𝑔, that is 𝑔 = 𝑞.

|𝐺| = 𝑒𝑔 = 𝑒𝑞 = |𝑄 × 𝑍|,
𝐺 = 𝑄 × 𝑍.

Case IV:

Claim: Either 𝑝 = 2 and 𝐺 is isomorphic to the dihedral group of order 2𝑛, where 𝑛 is
odd, or 𝑝 = 3 and 𝐺 ≅ SL2(3).
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Proof. Here, 𝑠 = 0 and 𝑡 = 1. Equation (6.16) simplifies to:

1 = 1
𝑔 + 𝑞 − 1

𝑞𝑘 + 𝑔1 − 1
2𝑔1

,

1 = 1
𝑔 + 𝑞 − 1

𝑞𝑘 + 1
2 − 1

2𝑔1
,

1
2 + 1

2𝑔1
= 1

𝑔 + 𝑞 − 1
𝑞𝑘 . (7.8)

Recall that |𝐴1| = 𝑒𝑔1 and [𝑁𝐺(𝐴1) ∶ 𝐴1] = 2 and so,

𝑒𝑔 = |𝐺| ≥ |𝑁𝐺(𝐴1)| = 2𝑒𝑔1.
So 𝑔 ≥ 2𝑔1 and 1/2𝑔1 ≥ 1/𝑔 and hence we can bound Equation (7.8):

1
2 ≤ 1

2 + 1
2𝑔1

− 1
𝑔 = 𝑞 − 1

𝑞𝑘 .

Clearly this forces 𝑘 = 1 and also 𝑞 > 1. We can now simplify and bound Equation (7.8)
as follows:

1
𝑞 + 1

4 ≥ 1
𝑞 + 1

2𝑔1
= 1

𝑔 + 1
2 > 1

2.

This gives 1/𝑞 > 1/4 and so 𝑞 is equal to either 2 or 3. We examine each case individually.

Case IVa: 𝑞 = 2𝑞 = 2𝑞 = 2. Equation (7.8) becomes

1
2𝑔1

= 1
𝑔 , ⟹ 𝑔 = 2𝑔1,

and we show that 𝐴1 is a normal subgroup of 𝐺:

|𝐺| = 𝑒𝑔 = 𝑒2𝑔1 = 2|𝐴1| = |𝑁𝐺(𝐴1)|.
In this case, a Sylow 𝑝-subgroup has order 2 so we have 𝑝 = 2 and also 𝑒 = 1. By it’s
definition, the order of 𝐴1 is relatively prime to 𝑝 = 2, so we have that |𝐴1| = 𝑔1 = 𝑛, where
𝑛 is odd, and consequently 𝐺 has order 2𝑛.

We now know enough about the structure of 𝐺 to establish some relations on it. Let
𝐴1 = ⟨𝑥⟩, so 𝑥𝑛 = 𝐼𝐺. By Theorem 6.6(iv) there exists a 𝑦 ∈ 𝑁𝐺(𝐴1) ∖ 𝐴1 such that
𝑦𝑥𝑦−1 = 𝑥−1.

|𝒞1| = [𝐺 ∶ 𝑁𝐺(𝐴1)] = 1.

|𝒞𝑄×𝑍| = [𝐺 ∶ 𝑁𝐺(𝑄 × 𝑍)] = |𝐺|
𝑒𝑞𝑘 = 2𝑛

2 = 𝑛.

The only maximal abelian subgroups of 𝐺 are thus 𝐴1 and the 𝑛 conjugate subgroups of
𝒞𝑄×𝑍.

Since 𝑦 belongs to some maximal abelian subgroup and 𝑦 ∉ 𝐴1, 𝑦 must belong to some
element of 𝒞𝑄×𝑍. Since |𝑄 × 𝑍| = 2, the order of 𝑦 is 2 and 𝑦2 = 𝐼𝐺. We have established
the following presentation of G.

𝐺 = ⟨𝑥, 𝑦 | 𝑥𝑛 = 𝐼𝐺 = 𝑦2, 𝑦𝑥𝑦−1 = 𝑥−1⟩.
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Let 𝐷𝑛 denote the dihedral group of order 2𝑛, that is the group of symmetries of a regular
polygon wih 𝑛 vertices. Let 𝑟 denote a clockwise rotation by 2𝜃/𝑛 radians and 𝑠 denote a
reflection. For 𝑛 odd, it can easily be verified that 𝐷𝑛 has the following presentation.

𝐷𝑛 = ⟨𝑟, 𝑠 | 𝑟𝑛 = 𝐼 = 𝑠2, 𝑠𝑟𝑠−1 = 𝑟−1⟩.
Since 𝐺 and 𝐷𝑛 have the same order and since their respective generators satisfy the

corresponding relations, there is an isomorphism mapping 𝑥 ↦ 𝑟 and 𝑦 ↦ 𝑠. Thus,

𝐺 = ⟨𝑥, 𝑦⟩ ≅ ⟨𝑟, 𝑠⟩ = 𝐷𝑛.
Case IVb: 𝑞 = 3𝑞 = 3𝑞 = 3. Now equation (7.8) becomes

1
2𝑔1

= 1
𝑔 + 1

6 > 1
6.

This means that 𝑔1 = 2 and 𝑔 = 12. Since 𝑞 = 3 we have 𝑝 = 3 and 𝑒 = 2. Furthermore we
have,

|𝐺| = 24, |𝐴1| = 4, |𝑁𝐺(𝐴1)| = 8, |𝑄 × 𝑍| = 6 |𝑁𝐺(𝑄 × 𝑍)| = 6

|𝒞1| = [𝐺 ∶ 𝑁𝐺(𝐴1)] = 24
8 = 3

|𝒞𝑄×𝑍| = [𝐺 ∶ 𝑁𝐺(𝑄 × 𝑍)] = 24
6 = 4

Notice that Fig 5 is almost identical to Fig 2 in the study of Case IIb. This is a strong
indication that these 2 cases are isomorphic to each other and hence also to SL2(3), albeit
not a proof. However, an argument analogous to the one outlined in the proof of Case IIb can
be directly applied here with a simple renaming of the conjugacy classes and representatives.
It would be tedious to repeat this argument again and I will leave it to the reader to verify.

Case V:

Claim: We have one of the following three cases:

(i) 𝐺 ≅ SL2(𝔽𝑞).

(ii) 𝐺 ≅ ⟨SL2(𝔽𝑞), 𝑑𝜋⟩, where 𝜋 ∈ 𝔽𝑞2 ∖ 𝔽𝑞, 𝜋2 ∈ 𝔽𝑞 and SL2(𝔽𝑞) ⊲ 𝐺.

(iii) 𝐺 ≅ SL2(5) and 𝑝 = 3 = 𝑞.

Proof. Here, 𝑠 = 0 and 𝑡 = 2. Equation (6.16) simplifies to:

1 = 1
𝑔 + 𝑞 − 1

𝑞𝑘 + 𝑔1 − 1
2𝑔1

+ 𝑔2 − 1
2𝑔2

,
1

2𝑔1
+ 1

2𝑔2
= 1

𝑔 + 𝑞 − 1
𝑞𝑘 . (7.9)

Recall that,

𝑒𝑔 = |𝐺| ≥ |𝑁𝐺(𝐴𝑖)| ≥ 2𝑒𝑔𝑖, thus 1
𝑔 ≤ 1

2𝑔𝑖
.
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Equation (7.9) is therefore bounded from below:

2
𝑔 ≤ 1

2𝑔1
+ 1

2𝑔2
= 1

𝑔 + 𝑞 − 1
𝑞𝑘 .

Therefore 𝑞 > 1, since if 𝑞 = 1 we arrive at the contradiction 2/𝑔 ≤ 1/𝑔. With this in mind
we have (𝑞 − 1)/𝑞 ≥ 1/2 and since 𝑔𝑖 ≥ 2 this allows us to bound (7.9) on either side.

1
2 ≥ 1

2𝑔1
+ 1

2𝑔2
= 1

𝑔 + 𝑞 − 1
𝑞𝑘 > 𝑞 − 1

𝑞𝑘 ≥ 1
2𝑘 .

This gives 𝑘 > 1 and so by Theorem 6.6(v), 𝑘 must equal 𝑔1 or 𝑔2 since the inequality
𝑒𝑘 = |𝐾| > |𝑍| = 𝑒 holds. Without loss of generality we let 𝑘 = 𝑔1 and (7.9) becomes,

1
2𝑔1

+ 1
2𝑔2

= 1
𝑔 + 𝑞 − 1

𝑞𝑔1
= 1

𝑔 + 1
𝑔1

− 1
𝑞𝑔1

,

1
2𝑔2

= 1
𝑔 + 1

2𝑔1
− 1

𝑞𝑔1
. (7.10)

Let 𝑁𝐺(𝑄) act on 𝑄∖𝐼𝐺 by conjugation and consider the stabiliser in 𝑁𝐺(𝑄) of an arbitrarily
chosen 𝑥 ∈ 𝑄∖𝐼𝐺.

Stab(𝑥) = {𝑔 ∈ 𝑁𝐺(𝑄) ∶ 𝑔𝑥𝑔−1 = 𝑥}
= 𝐶𝐺(𝑥) ∩ 𝑁𝐺(𝑄)
= (𝑄 × 𝑍) ∩ 𝑁𝐺(𝑄) (by Theorem 6.6(iii))
= 𝑄 × 𝑍. (since 𝑄 × 𝑍 ⊂ 𝑁𝐺(𝑄))

Thus by the Orbit-Stabiliser Theorem,

|Orb(𝑥)| = [𝑁𝐺(𝑄) ∶ 𝑄 × 𝑍] = 𝑒𝑞𝑘
𝑒𝑞 = 𝑘

Since 𝑥 was chosen arbitrarily from 𝑄∖𝐼𝐺, each element of 𝑄∖𝐼𝐺 has an orbit in 𝑁𝐺(𝑄)
of size 𝑘. Considering also the fact that 𝑄∖𝐼𝐺 is equal to the union of the pairwise disjoint
orbits of its elements, we conclude that 𝑘 = 𝑔1 divides |𝑄∖𝐼𝐺|. Thus there exists some
𝑑 ∈ ℤ+ such that,

𝑞 − 1 = 𝑑𝑔1. (7.11)

Now set,

𝑖 = 2𝑔1𝑔2𝑞
𝑔 > 0, (7.12)

and multiply (7.10) by 𝑖𝑔 to give,

𝑔1𝑞 = 𝑖 + (𝑞 − 2)𝑔2. (7.13)

Thus 𝑖 is an integer and since it is greater than zero by definition, (7.13) gives,

𝑔1 > (𝑞 − 2)𝑔2
𝑞 . (7.14)
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Also, using (7.11) and (7.13) we get,

𝑔1𝑞 = 𝑖 + (𝑞 − 1)𝑔2 − 𝑔2
= 𝑖 + 𝑑𝑔1𝑔2 − 𝑔2,

𝑔2 = 𝑖 + (𝑑𝑔2 − 𝑞)𝑔1. (7.15)

Applying Lemma 7.2 we observe that 𝑄 is not normal in 𝐺, and so

𝑒𝑔 = |𝐺| > |𝑁𝐺(𝑄)| = 𝑒𝑞𝑘 = 𝑒𝑞𝑔1,

1
𝑞𝑔1

> 1
𝑔 .

And (7.10) gives us,

1
2𝑔2

= 1
𝑔 − 1

𝑞𝑔1
+ 1

2𝑔1
< 1

2𝑔1
,

𝑔1 < 𝑔2. (7.16)

Consider now,

[𝐺 ∶ 𝑁𝐺(𝑄)] = 𝑒𝑔
𝑒𝑞𝑘 = 𝑔

𝑞𝑔1
= 2𝑔2

𝑖 ∈ ℤ. (by (7.12))

Thus 𝑖 divides 2𝑔2. Recall that the order of 𝐴2 is relatively prime to 𝑝 by Theorem 6.6(iii),
so 𝑔2 is also relatively prime to 𝑝. Therefore if 𝑝 ≠ 2, 𝑖 is relatively prime to 𝑝 and if 𝑝 = 2
then 𝑝 divides 𝑖 but 𝑝2 does not. Now since 𝑄 is a Sylow 𝑝-subgroup of 𝐺, this means that
greatest common denominator of 𝑖 and 𝑞 is either 1 or 2. Now consider,

[𝐺 ∶ 𝑁𝐺(𝐴2)] = 𝑒𝑔
2𝑒𝑔2

= 𝑔1𝑞
𝑖 ∈ ℤ. (by (7.12))

Thus 𝑖 divides 𝑔1𝑞 and since gcd(𝑖, 𝑞) = 1 or 2, i must divide 2𝑔1. So there exists some
𝑚 ∈ ℤ+ such that,

𝑖 = 2𝑔1
𝑚 . (7.17)

We consider now the separate cases which arise for different values of 𝑞.

Cases Va and Vb: 𝑞 ≥ 4𝑞 ≥ 4𝑞 ≥ 4. This condition gives us a lower bound for the inequality in
(7.14),

𝑔1 > (𝑞 − 2)𝑔2
𝑞 > 𝑔2

2 .

Combining this with (7.16) we have,

𝑔1 < 𝑔2 < 2𝑔1. (7.18)

Substituting (7.17) into (7.15) gives,

𝑔2 = ( 2
𝑚 + 𝑑𝑔2 − 𝑞) 𝑔1
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Thus (7.18) gives that,

1 < 2
𝑚 + 𝑑𝑔2 − 𝑞 < 2.

This means that 2/𝑚 is some fraction between 0 and 1 and 𝑑𝑔2 − 𝑞 = 1. So (7.15)
becomes,

𝑔2 = 𝑔1 + 𝑖. (7.19)

Substituting this into (7.10) we find that,

𝑔1𝑞 = 𝑖 + (𝑞 − 2)(𝑔1 + 𝑖),
2𝑔1 = 𝑖(𝑞 − 1) = 𝑖𝑑𝑔1, (by (7.11))

2 = 𝑖𝑑.

We remark that since both 𝑖 and 𝑑 are positive integers, 𝑖 (and indeed 𝑑) must equal 1
or 2. Thus by (7.19) and (7.12),

𝑔1 = 𝑖(𝑞 − 1)
2 , 𝑔2 = 𝑖(𝑞 + 1)

2 , 𝑔 = 2𝑔1𝑔2𝑞
𝑖 = 𝑖𝑞(𝑞2 − 1)

2 .

Thus we have the following expressions for the orders of 𝐾 and 𝐺:

|𝐾| = 𝑒𝑖(𝑞 − 1)
2 , |𝐺| = 𝑒𝑖𝑞(𝑞2 − 1)

2 . (7.20)

By Proposition 5.28, each noncentral element of 𝑄 has a unique common fixed point on
the projective line ℒ, call it 𝑃1. Furthermore, we saw in the proof of Theorem 6.6(v) that
each noncentral element of 𝐾 also fixes 𝑃1 as well as one other point, call it 𝑃2. Let 𝑢 be a
noncentral element of 𝑄 and set 𝑃3 = 𝑃 𝑢

2 . Clearly 𝑃3 is different from 𝑃1 and 𝑃2 because
otherwise a contradiction is reached. By Theorem 5.27, 𝑃𝑆𝐿(ℒ) is triply transitive, so there
exists a 𝑣 ∈ 𝐿 such that,

𝑃 𝑣
1 = 𝑅1 = [0

1] , 𝑃 𝑣
2 = 𝑅2 = [1

0] , 𝑃 𝑣
3 = 𝑅3 = [1

1] .

Observe that,

𝑣𝑄𝑣−1𝑅1 = 𝑣𝑄𝑃1 = 𝑣𝑃1 = 𝑅1,
𝑣𝐾𝑣−1𝑅𝑖 = 𝑣𝐾𝑃𝑖 = 𝑣𝑃𝑖 = 𝑅𝑖. (𝑖 = 1, 2)

Thus 𝑣𝑄𝑣−1 fixes 𝑅1 whilst 𝑣𝐾𝑣−1 fixes both 𝑅1 and 𝑅2. The only elements of 𝐿 that
fix 𝑅1 are the lower triangular matrices, thus 𝑣𝑄𝑣−1 ⊂ 𝐻, whilst the only elements that
fix 𝑅2 are the upper triangular matrices, thus 𝑣𝐾𝑣−1 ⊂ 𝐷. Furthermore, each noncentral
element of 𝑣𝑄𝑣−1 has order 𝑝. The only elements of 𝐻 with order 𝑝 are those in 𝑇 , thus
𝑣𝑄𝑣−1 ⊂ 𝑇 . Since 𝑢 ∈ 𝑄 ∖ 𝐼𝐺, we have that 𝑣𝑢𝑣−1 = 𝑡𝛾 for some 𝛾 ∈ 𝐹 .

𝑣𝑢𝑣−1𝑅2 = 𝑣𝑢𝑃2 = 𝑣𝑃3 = 𝑅3,

[1 0
𝛾 1] [1

0] = [1
𝛾] ∼ [1

1] . ⟹ 𝛾 = 1.
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So 𝑣𝑢𝑣−1 = 𝑡1. If we now consider 𝐺 = 𝑣𝐺𝑣−1 instead of 𝐺, we can assume without loss
of generality that,

𝑄 ⊂ 𝑇 , 𝐾 ⊂ 𝐷, 𝑢 = 𝑡1.

Let 𝑥 be a generator of 𝐾. By Theorem 6.6(iv) there exists a 𝑦 ∈ 𝑁𝐺(𝐾)∖𝐾 such that
𝑦𝑥 = 𝑥−1𝑦. Since 𝑅1 is fixed by both 𝑥 and 𝑥−1 we have,

𝑥−1𝑦𝑅1 = 𝑦𝑥𝑅1 = 𝑦𝑅1.

Thus 𝑥−1 fixes 𝑦𝑅1, that is 𝑦𝑅1 ∈ {𝑅1, 𝑅2}. Similarly, 𝑦𝑅2 ∈ {𝑅1, 𝑅2}. Assume 𝑦𝑅1 = 𝑅1.
Since 𝑅1 and 𝑅2 are distinct points in ℒ this implies that 𝑦𝑅2 = 𝑅2.

𝑦𝑅1 = [𝛼 𝛽
𝛾 𝛿] [0

1] = [𝛽
𝛿] ∼ [0

1] ⟹ 𝛽 = 0.

𝑦𝑅2 = [𝛼 𝛽
𝛾 𝛿] [1

0] = [𝛼
𝛾] ∼ [1

0] ⟹ 𝛾 = 0.

Thus 𝑦 ∈ 𝐷, which is a contradiction since elements in 𝐷 do not invert 𝑥 ∈ 𝐷, hence,

𝑦𝑅1 = 𝑅2, and 𝑦𝑅2 = 𝑅1. (7.21)

This allows us to determine more about 𝑦,

𝑦𝑅1 = [𝛼 𝛽
𝛾 𝛿] [0

1] = [𝛽
𝛿] ∼ [1

0] ⟹ 𝛿 = 0.

𝑦𝑅2 = [𝛼 𝛽
𝛾 𝛿] [1

0] = [𝛼
𝛾] ∼ [0

1] ⟹ 𝛼 = 0.

Thus 𝑦 is an anti-diagonal matrix. Recalling (5.2), for some 𝜌 ∈ 𝐹 ∗ we have,

𝑦 = 𝑑𝜌𝑤 = [ 0 𝜌
−𝜌−1 0] .

Consider now the set of right cosets of 𝑁𝐺(𝑄) of the form 𝑁𝐺(𝑄)𝑦𝑞, (where 𝑞 ∈ 𝑄) in
𝑁𝐺(𝑄)𝑦𝑄. For 𝑞1, 𝑞2 ∈ 𝑄 we have,

𝑁𝐺(𝑄)𝑦𝑞1 = 𝑁𝐺(𝑄)𝑦𝑞2 ⟺ 𝑦𝑞2𝑞1
−1𝑦−1 ∈ 𝑁𝐺(𝑄)

⟺ 𝑞2𝑞1
−1 ∈ 𝑦−1𝑁𝐺(𝑄)𝑦

⟺ (𝑄 ∩ 𝑦−1𝑁𝐺(𝑄)𝑦)𝑞2 = (𝑄 ∩ 𝑦−1𝑁𝐺(𝑄)𝑦)𝑞1.

So the number of right cosets of 𝑁𝐺(𝑄) in 𝑁𝐺(𝑄)𝑦𝑄 is equal to the number of right
cosets of 𝑄 ∩ 𝑦−1𝑁𝐺(𝑄)𝑦 in 𝑄. That is,

[𝑁𝐺(𝑄)𝑦𝑄 ∶ 𝑁𝐺(𝑄)] = [𝑄 ∶ 𝑄 ∩ 𝑦−1𝑁𝐺(𝑄)𝑦]. (7.22)
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Let 𝑔 be an arbitrary element of 𝑁𝐺(𝑄). By Theorems 5.21(i) and 5.28(ii) we have
𝑁𝐺(𝑄) ⊂ 𝐻 = Stab(𝑅1), thus 𝑔 fixes 𝑅1. Using (7.21) we see that,

𝑦−1𝑔𝑦𝑅2 = 𝑦−1𝑔𝑅1 = 𝑦−1𝑅1 = 𝑅2.

Hence 𝑅2 is a fixed point of 𝑦−1𝑔𝑦. Since 𝑔 was chosen arbitrarily, we assert that each
element of 𝑦−1𝑁𝐺(𝑄)𝑦 fixes 𝑅2. On the contrary, the only element of 𝑄 which fixes 𝑅2 is
𝐼𝐺, thus 𝑄 ∩ 𝑦𝑁𝐺(𝑄)𝑦−1 = 𝐼𝐺.

[𝑁𝐺(𝑄)𝑦𝑄 ∶ 𝑁𝐺(𝑄)] = [𝑄 ∶ 𝑄 ∩ 𝑦−1𝑁𝐺(𝑄)𝑦] = 𝑞,

|𝑁𝐺(𝑄)𝑦𝑄| = 𝑞|𝑁𝐺(𝑄)|. (7.23)

We show next that 𝑁𝐺(𝑄)𝑦𝑄 ∩ 𝑁𝐺(𝑄) = ∅. Let 𝑡𝜆𝑑𝜔 and 𝑡𝜇 be arbitrarily chosen from
𝑁𝐺(𝑄) and 𝑄 respectively so that 𝑡𝜆𝑑𝜔𝑦𝑡𝜇 is an arbitrary element of 𝑁𝐺(𝑄)𝑦𝑄.

𝑡𝜆𝑑𝜔𝑦𝑡𝜇 = [1 0
𝜆 1] [𝜔 0

0 𝜔−1] [ 0 𝜌
−𝜌−1 0] [1 0

𝜇 1]

= [ 𝜔 0
𝜔𝜆 𝜔−1] [ 𝜌𝜇 𝜌

−𝜌−1 0]

= [ 𝜔𝜌𝜇 𝜔𝜌
𝜔𝜆𝜌𝜇 − 𝜔−1𝜌−1 𝜔𝜌𝜆] . (7.24)

Since 𝜔, 𝜌 ∈ 𝐹 ∗, the top right entry of (7.24) is non-zero. Recall also that 𝑁𝐺(𝑄) ⊂ 𝐻 by
Theorem 5.21(i) and that 𝐻 is the set of all lower triangular matrices of 𝐿. Since 𝑡𝜆𝑑𝜔𝑑𝜌𝑤𝑡𝜇
was chosen arbitraily, no element of 𝑁𝐺(𝑄)𝑦𝑄 is in 𝐻 whilst the whole of 𝑁𝐺(𝑄) is contained
in 𝐻, thus they are disjoint. Using (7.23) and (7.20) we also observe that,

|𝑁𝐺(𝑄)𝑦𝑄| + |𝑁𝐺(𝑄)| = (𝑞 + 1)|𝑁𝐺(𝑄)| = (𝑞 + 1)𝑒𝑞𝑔1 = 𝑒𝑖𝑞(𝑞2 − 1)
2 = |𝐺|.

Since 𝑁𝐺(𝑄)𝑦𝑄 and 𝑁𝐺(𝑄) are disjoint and the sum of their orders is equal to the order of
𝐺, they partition 𝐺 into the set of elements that belong to 𝐻 and the set that don’t.

𝐺 = 𝑁𝐺(𝑄)𝑦𝑄 ∪ 𝑁𝐺(𝑄). (7.25)
Let ℕ = {𝜆 ∶ 𝑡𝜆 ∈ 𝑄}. We will show that ℕ = 𝔽𝑞. For each 𝑡𝜆 ∈ 𝑄 ∖ 𝑍, the element

𝑦𝑡𝜆𝑦−1 ∉ 𝐻, so by (7.25), 𝑦𝑡𝜆𝑦−1 ∈ 𝑁𝐺(𝑄)𝑦𝑄. Thus there exists 𝑡𝜇, 𝑡𝜐 ∈ 𝑄 and 𝑑𝜔 ∈ 𝐾
such that,

𝑦𝑡𝜆𝑦−1 = 𝑡𝜇𝑑𝜔𝑦𝑡𝜐,

[ 0 𝜌
−𝜌−1 0] [1 0

𝜆 1] [ 0 −𝜌
𝜌−1 0 ] = [1 0

𝜇 1] [𝜔 0
0 𝜔−1] [ 0 𝜌

−𝜌−1 0] [1 0
𝜐 1] ,

[ 0 𝜌
−𝜌−1 0] [ 0 −𝜌

𝜌−1 −𝜌𝜆] = [ 𝜔 0
𝜔𝜇 𝜔−1] [ 𝜌𝜐 𝜌

−𝜌−1 0] ,

[1 −𝜌2𝜆
0 1 ] = [ 𝜔𝜌𝜐 𝜔𝜌

𝜔𝜌𝜇𝜐 − 𝜔−1𝜌−1 𝜔𝜌𝜇] .
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Equating the top right entries gives,

𝜔 = −𝜌𝜆. (7.26)

Since 𝑡1 ∈ 𝑄, so is it’s inverse, thus −1 ∈ ℕ. Letting 𝜆 = −1 in (7.26) gives 𝜔 = 𝜌, which
means that 𝑑𝜌 ∈ 𝐾. Consequently, this shows that 𝑤 = 𝑑−1

𝜌 𝑦 ∈ 𝐺 and we may replace 𝑦 by
𝑤 in (7.25) without it affecting the partition of 𝐺. This is equivalent to letting 𝜌 = 1, and
(7.26) simplifies to,

𝜔 = −𝜆. (7.27)

Let 𝕄 = {𝜔 ∶ 𝑑𝜔 ∈ 𝐾}. Recall from (7.20) that |𝐾| = 𝑖(𝑞 − 1). We consider the different
cases which arise depending on the values of 𝑖 and 𝑒.

Let Case Va be the case when 𝑒 = 1 or 𝑖 = 1. Observe that 𝑖 and 𝑒 cannot both equal 1,
since this would imply that 2 divides 𝑞 − 1 (by (7.20)), but if 𝑒 = 1 it follows that 𝑞 − 1 is
even. Hence 𝑒𝑖 = 2 and 𝐾 has order 𝑞 − 1. Furthermore, the order of each element of 𝐾
divides 𝑞 − 1, so for each 𝜔 ∈ 𝕄,

𝜔𝑞−1 = 1. (7.28)

Also, the following polynomial has at most 𝑞 − 1 roots in 𝐹 .

𝑥𝑞−1 = 1. (7.29)

By (7.2), 𝔽𝑞 ⊂ 𝐹 and each element of 𝔽∗
𝑞 is a root of (7.29). Thus each 𝜔 of 𝕄 is in 𝔽∗

𝑞
and since they have the same cardinality, 𝕄 = 𝔽∗

𝑞. By (7.27), 𝜆 also ranges over 𝔽∗
𝑞 and

considering also that 𝜆 can be 0, we have ℕ = 𝔽𝑞.

Observe that each element of 𝐺 is either of the form 𝑡𝜆𝑑𝜔 or 𝑡𝜆𝑑𝜔𝑤𝑡𝜇 (where 𝜆, 𝜇 ∈ 𝔽𝑞,
𝜔 ∈ 𝔽∗

𝑞), so 𝐺 ⊂ SL2(𝔽𝑞). Also, Propostion 7.4 gives that, | SL2(𝔽𝑞)| = 𝑞(𝑞2 − 1) = |𝐺|, so
𝐺 = SL2(𝔽𝑞). Since 𝐺 is conjugate in 𝐿 to 𝐺, we have 𝐺 ≅ SL2(𝔽𝑞) as desired.

Let Case Vb be the case when 𝑖 = 2 = 𝑒. This time the order of each element of 𝐾
divides 2(𝑞 − 1), so for each 𝜔 ∈ 𝕄,

𝜔2(𝑞−1) = 1. (7.30)

As in the case of 𝑖 = 1, each element of 𝔽∗
𝑞 is a root of the polynomial in (7.29), as are each

𝜔2. Thus 𝜔2 ranges over 𝔽∗
𝑞 and by (7.2), 𝜔 ∈ 𝔽𝑞2 ∖ 𝔽𝑞. Simple matrix multiplication shows

that,

𝑑−1
𝜔 𝑡𝜆𝑑𝜔 = 𝑡𝜔2𝜆.

Hence since 𝑡0, 𝑡1 ∈ 𝑄, it follows that 𝑡𝜔2 ∈ 𝑄 for each 𝜔2 ∈ 𝔽∗
𝑞, thus ℕ = 𝔽𝑞. Since 𝐾 is a

cyclic group of order 2(𝑞 − 1), so too is 𝕄. Let 𝜋 be a generator of 𝕄. It follows that 𝜋2 has
order 𝑞 − 1 and is therefore a generator of 𝔽∗

𝑞. Since 𝐾 = ⟨𝑑𝜋⟩, we have:

𝐺 = ⟨𝑡𝜆, 𝑑𝜋, 𝑤 ∶ 𝜆 ∈ 𝔽𝑞⟩ = ⟨SL2(𝔽𝑞), 𝑑𝜋⟩.
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Again, since 𝐺 is conjugate in 𝐿 to 𝐺, we have 𝐺 ≅ ⟨SL2(𝔽𝑞), 𝑑𝜋⟩ as desired. Now we take
an arbitrary 𝑥 from SL2(𝔽𝑞) and conjugate it by 𝑑𝜋.

𝑑𝜋𝑥𝑑−1
𝜋 = [𝜋 0

0 𝜋−1] [𝛼 𝛽
𝛾 𝛿] [𝜋−1 0

0 𝜋]

= [𝜋 0
0 𝜋−1] [𝛼𝜋−1 𝛽𝜋

𝛾𝜋−1 𝛿𝜋]

= [ 𝛼 𝛽𝜋−2

𝛾𝜋2 𝛿 ] .

Since 𝜋2 ∈ 𝔽𝑞, we have that 𝑑𝜋𝑥𝑑−1
𝜋 ∈ SL2(𝔽𝑞) and since 𝑥 was chosen arbitrarily, 𝑑𝜋 belongs

to the normaliser of SL2(𝔽𝑞) in ⟨SL2(𝔽𝑞), 𝑑𝜋⟩. This shows that SL2(𝔽𝑞) ⊲ ⟨SL2(𝔽𝑞), 𝑑𝜋⟩ as
desired.

Cases Vc and Vd: 𝑞 ≤ 3𝑞 ≤ 3𝑞 ≤ 3. Since 𝑞 − 1 = 𝑑𝑔1 ≥ 2 by (7.11), 𝑞 cannot equal 2. So
𝑞 = 3 = 𝑝, 𝑒 = 2 and thus 𝑔1 = 2. The inequalities in (7.16) and (7.14) give,

2 < 𝑔2 < 6.

Also, since 𝑔2 is relatively prime to 𝑝 = 3, we have 𝑔2 = 4 or 5. Let Case Vc be the case
when 𝑔2 = 4. (7.10) becomes,

1
8 = 1

𝑔 + 1
4 − 1

6,

which gives 𝑔 = 24. Observe that,

|𝐾| = 4 = 𝑖(𝑞 − 1), |𝐺| = 48 = 𝑖𝑞(𝑞2 − 1),

where 𝑖 = 2, thus we have the situation as described in Case Vb. That is, 𝐺 ≅ ⟨SL2(𝔽𝑞), 𝑑𝜋⟩
with 𝑞 = 3.

Alternatively, Case Vd occurs when 𝑔2 = 5. (7.10) becomes,

1
10 = 1

𝑔 + 1
4 − 1

6.

Thus 𝑔 = 60 and |𝐺| = 120. We verify, using Proposition 7.4, that SL2(5) has the same
order as 𝐺, that is | SL2(5)| = 5(52 − 1) = 120. Observe that,

|𝒞1| = [𝐺 ∶ 𝑁𝐺(𝐴1)] = 𝑒𝑔
2𝑒𝑔1

= 15,

|𝒞2| = [𝐺 ∶ 𝑁𝐺(𝐴2)] = 𝑒𝑔
2𝑒𝑔2

= 6,

|𝒞𝑄×𝑍| = [𝐺 ∶ 𝑁𝐺(𝑄 × 𝑍)] = 𝑒𝑔
𝑒𝑘𝑞 = 10.

Now consider the quotient group 𝐺/𝑍 of order 60. It’s trivial that for all 𝐴𝑖, 𝐴𝑗 ∈ 𝔐,
𝐴𝑖/𝑍 belongs to the same conjugacy class as 𝐴𝑗/𝑍 if and only 𝐴𝑖 and 𝐴𝑗 belong to the
same conjugacy class. So the number of subgroups conjugate to 𝐴𝑖/𝑍 is |𝒞𝑖|. Similarly, the
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number of subgroups conjugate to (𝑄 × 𝑍)/𝑍 is |𝒞𝑄×𝑍|.

We now calculate the order of each maximal abelian subgroup of 𝐺 when we quotient out
𝑍.

|𝐴1/𝑍| = 2, |𝐴2/𝑍| = 5, |(𝑄 × 𝑍)/𝑍| = 3.

We now know enough about 𝐺/𝑍 to determine the order of each of it’s elements:

The identity has order 1.
The non-central element of 𝐴1/𝑍 has order 2, as does the non-central element in each of the
|𝒞1| = 15 subgroups conjugate to 𝐴1/𝑍. So there are 15 elements of order 2.
The 4 non-central elements of 𝐴2/𝑍 have order 5, as do the non-central elements in each of
the |𝒞2| = 6 subgroups conjugate to 𝐴2/𝑍. Thus there are 24 elements of order 5.
The 2 non-central elements of (𝑄×𝑍)/𝑍 have order 3, as do the non-central elements in each
of the |𝒞𝑄×𝑍| = 10 subgroups conjugate to (𝑄×𝑍)/𝑍. Thus there are 20 elements of order 3.

Since 1 + 15 + 24 + 20 = 60, all elements of 𝐺/𝑍 are accounted for.

Let 𝑁 be a normal subgroup of 𝐺/𝑍. Observe that each non-central element of 𝐴2/𝑍
is a generator of it, so if 𝑁 contains one non-central element of 𝐴2/𝑍, then it contains the
whole of it, due to the closure of the group under multiplication and the fact that each
element of 𝐴2/𝑍 is a power of any non-central element. Also, it can easily be seen that
normal subgroups are composed of whole conjugacy classes, so since 𝑁 is normal in 𝐺, if it
contains 𝐴2/𝑍, it must contain all subgroups conjugate to 𝐴2/𝑍. The consequence of this
is that if 𝑁 has an element of order 5, then it contains all 24 elements of 𝐺/𝑍 of order 5.
Similarly, if it contains an element of order 2, it contains all 15 of them and if it contains
an element of order 3, it contains all 20 of them. This means that |𝑁| is partitioned by
some or all of the elements in {1, 15, 20, 24}. Bearing in mind that the order of 𝑁 divides 60
and that 𝑁 contains the identity element, this means that 𝑁 is equal to either the identity
element or it is the whole of 𝐺/𝑍, since it’s easy to see that no other partition of those
numbers divides 60. Thus 𝐺/𝑍 has no non-trivial normal subgroups and is simple.

By [?, p.145], the only simple groups of order 60 are those isomorphic to the alternat-
ing group 𝐴5 (not to be confused with an element of 𝔐), thus 𝐺/𝑍 ≅ 𝐴5. Since 𝑍 ≅ ℤ2,
we have that 𝐺 is isomorphic to a central extension of 𝐴5 which, according to Schur [?], is
unique and isomorphic to SL2(5) as desired. The proofs of these 2 claims are beyond the
scope of this thesis.

Case VI:

Claim: We have one of the following three cases:

(i) 𝐺 = ⟨ 𝑥, 𝑦 | 𝑥𝑛 = 𝑦2, 𝑦𝑥𝑦−1 = 𝑥−1 ⟩, where 𝑛 is even.

(ii) 𝐺 = 𝑆4.

(iii) 𝐺 ≅ SL2(5) and 𝑝 does not divide |𝐺|.

Where 𝑆4 is one of the representation groups of the symmetric group 𝑆4 in which the
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transpositions correspond to the elements of order 4.

Proof. Here, 𝑠 = 0 and 𝑡 = 3. Equation (6.16) simplifies to:

1 = 1
𝑔 + 𝑞 − 1

𝑞𝑘 + 𝑔1 − 1
2𝑔1

+ 𝑔2 − 1
2𝑔2

+ 𝑔3 − 1
2𝑔3

,

1
2𝑔1

+ 1
2𝑔2

+ 1
2𝑔3

= 1
𝑔 + 𝑞 − 1

𝑞𝑘 + 1
2. (7.31)

First assume that 𝑞 > 1 and 𝑘 = 1. (7.31) is thus bounded as follows,

3
4 > 1

2𝑔1
+ 1

2𝑔2
+ 1

2𝑔3
= 1

𝑔 + 𝑞 − 1
𝑞𝑘 + 1

2 > 1,

which is a contradiction. Now assume that 𝑞 > 1 and 𝑘 > 1. This means that 𝑘 = 𝑔𝑖 for
some 𝑖. Without loss of generality we can assume that 𝑘 = 𝑔1. Now (7.31) becomes,

1
2 ≥ 1

2𝑔2
+ 1

2𝑔3
≥ 1

𝑔 + 1
2 > 1

2,

which again is a contradiction, thus we conclude that 𝑞 = 1. (7.31) simplifies and we can
now determine the possible values of each 𝑔𝑖.

1
2𝑔1

+ 1
2𝑔2

+ 1
2𝑔3

= 1
𝑔 + 1

2. (7.32)

Without loss of generality we may assume that 2 ≤ 𝑔1 ≤ 𝑔2 ≤ 𝑔3. If 𝑔1 ≠ 2 we arrive at
the following contradiction

1
6 + 1

6 + 1
6 ≥ 1

2𝑔1
+ 1

2𝑔2
+ 1

2𝑔3
= 1

𝑔 + 1
2.

Thus 𝑔1 = 2 and we have,

1
2𝑔2

+ 1
2𝑔3

> 1
4. (7.33)
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Clearly 𝑔2 must equal either 2 or 3. If 𝑔2 = 2 it is easily shown that 𝑔 = 2𝑔3. If 𝑔2 = 3
we see that 𝑔3 ∈ {3, 4, 5}. Assume that 𝑔2 and 𝑔3 = 3. Notice that since 𝑔1 = 2, 2 must
divide the order of 𝐺. Recall also that a Sylow 𝑝-subgroup of 𝐺 has order 1, so we assert
that 𝑝 ≠ 2 and 𝑒 = 2. We see from (7.32) that |𝐺| = 24 and thus a Sylow 3-subgroup has
order 3. The maximal abelian subgroups conjugate to 𝐴2 or 𝐴3 have order 6 and therefore
each contains a Sylow 3-subgroup of 𝐺. Let 𝐵2 and 𝐵3 be the Sylow 3-subgroups contained
in 𝐴2 and 𝐴3 respectively. Observe that for 𝑖 = 2 or 3,

𝐴𝑖 ≅ ℤ6 ≅ ℤ3 × ℤ2 ≅ 𝐵𝑖 × 𝑍 ≅ 𝐵𝑖𝑍. (7.34)

Let 𝑏2 ∈ 𝐵2, 𝑏3 ∈ 𝐵3 and 𝑧 ∈ 𝑍. Recall that 𝐵2 and 𝐵3 are conjugate in 𝐺 by Sylow’s
Second Theorem, so there exists an 𝑥 ∈ 𝐺 such that,

𝑥𝑏2𝑥−1 = 𝑏3,
𝑥𝑏2𝑥−1𝑧 = 𝑏3𝑧,
𝑥𝑏2𝑧𝑥−1 = 𝑏3𝑧.

Since 𝑏2, 𝑏3 and 𝑧 were chosen arbitrarily, we observe that 𝐵2𝑍 is conjuagate to 𝐵3𝑍 and
thus by (7.34), 𝐴2 ≅ 𝐴3. This contradicts the fact that 𝐴2 and 𝐴3 are representatives of
different conjugacy classes of maximal abelian subgroups of 𝐺, which means that 𝑔2 and 𝑔3
cannot both equal 3. Thus we are left with the following three cases:

𝑔1 = 2, 𝑔2 = 2, 𝑔 = 2𝑔3.
𝑔1 = 2, 𝑔2 = 3, 𝑔3 = 4.
𝑔1 = 2, 𝑔2 = 3, 𝑔3 = 5.

Case VIa: 𝑔1 = 2, 𝑔2 = 2, 𝑔 = 2𝑔3𝑔1 = 2, 𝑔2 = 2, 𝑔 = 2𝑔3𝑔1 = 2, 𝑔2 = 2, 𝑔 = 2𝑔3. First observe that,

[𝐺 ∶ 𝑁𝐺(𝐴1)] = 𝑒𝑔
2𝑒𝑔1

= 𝑔3
2 .

Thus 𝑔3/2 is an integer which means that 𝑔3 must be even, call it 𝑛. Now let 𝐴3 = ⟨𝑥⟩.
Since |𝐴3| = 𝑒𝑔3, the order of 𝑥 is 2𝑛 and 𝑥𝑛 has order 2. By Theorem (6.6)(iv) there exists
a 𝑦 ∈ 𝑁𝐺(𝐴3)∖𝐴3 such that 𝑦𝑥𝑦−1 = 𝑥−1. Also,

|𝒞3| = [𝐺 ∶ 𝑁𝐺(𝐴3)] = 1.

Since 𝑦 ∉ 𝐴3 and 𝐴3 has no conjugate subgroups (aside from itself), 𝑦 must lie in a maximal
abelian subgroup conjugate to either 𝐴1 or 𝐴2. This means that since |𝐴1| = 4 = |𝐴2| and
𝑦 ∉ 𝑍, the order of 𝑦 must be 4. By the uniqueness of the element of order 2, we have the
relation 𝑥𝑛 = 𝑦2 and 𝐺 is given by the presentation,

𝐺 = ⟨ 𝑥, 𝑦 | 𝑥𝑛 = 𝑦2, 𝑦𝑥𝑦−1 = 𝑥−1 ⟩. (where 𝑛 is even)

Case VIb: 𝑔1 = 2, 𝑔2 = 3, 𝑔3 = 4𝑔1 = 2, 𝑔2 = 3, 𝑔3 = 4𝑔1 = 2, 𝑔2 = 3, 𝑔3 = 4. In this case (7.32) becomes,

1
4 + 1

6 + 1
8 = 1

𝑔 + 1
2.

61



Thus 𝑔 = 24 and |𝐺| = 48. Consider the quotient group 𝐺/𝑍 of order 24 and the quotient
group 𝑁𝐺(𝐴2)/𝑍 which, for convenience, we will call 𝐻.

|𝐻| = 2𝑒𝑔2
𝑒 = 6.

Let 𝑥 be an element of order 6 from 𝐴2. By Theorem 6.6(iv) there exists a 𝑦 ∈ 𝑁𝐺(𝐴2)∖𝐴2
such that 𝑦𝑥 = 𝑥−1𝑦. Thus for 𝑥𝑍, 𝑦𝑍, 𝑥−1𝑍 ∈ 𝐻 we have,

𝑦𝑍𝑥𝑍 = 𝑦𝑥𝑍 = 𝑥−1𝑦𝑍 = 𝑥−1𝑍𝑦𝑍.

If 𝐻 is abelian, then 𝑥𝑍 = 𝑥−1𝑍 and thus 𝑥2 ∈ 𝑍. Also, since 𝑥 has order 6, 𝑥2 has order 3.
This is contradiction since there is no element of order 3 in 𝑍. Thus 𝐻 is non-abelian and
is therefore isomorphic to the symmetric group 𝑆3.

Now we determine the normal subgroups of 𝐻. The identity and 𝐻 itself are trivially
normal. Furthermore, the elementary result that any subgroup of index 2 is normal implies
that 𝐴2/𝑍, the subgroup of 𝐻 of order 3, is normal. It remains to check the subgroups of
order 2. Let r be a generator of one of the subgroups of order 2 and let 𝑥 be an arbitrary ele-
ment of 𝐻. If ⟨𝑟⟩ is normal in 𝐻, then 𝑥𝑟𝑥−1 ∈ {𝐼, 𝑟}. Since 𝑟 ≠ 𝐼 it follows that 𝑥𝑟𝑥−1 ≠ 𝐼 .
Alternatively if 𝑥𝑟𝑥−1 = 𝑟, then 𝑟 ∈ 𝑍(𝐻). By the elementary result that 𝑍(𝑆𝑛) = {𝐼} for
𝑛 > 2, we have that 𝑍(𝐻) = {𝐼} and the contradiction 𝑟 = 𝐼 . Thus 𝑥𝑟𝑥−1 ∉ ⟨𝑟⟩ and 𝐻
has no normal subgroup of order 2. We conclude that the only normal subgroups of 𝐻 are
those of order 1, 3 or 6.

Note that the index of 𝐻 in 𝐺/𝑍 is 4. Let 𝐺/𝑍 act by left multiplication on the set of
left cosets of 𝐻. By Theorem 3.15, this action induces a homomorphism 𝜙 ∶ 𝐺/𝑍 ⟶ 𝑆4
with kernel,

𝑘𝑒𝑟(𝜙) = ⋂
𝑥∈𝐺/𝑍

𝑥𝐻𝑥−1 ⊂ 𝐻.

Recall the elementary result that the kernel of a homomorphism is a normal subgroup
of it’s domain. Thus the kernel of 𝜙 is normal in 𝐺/𝑍 and consequently in 𝐻 as well, that
is 𝑘𝑒𝑟(𝜙) ∈ {𝐼, 𝐴2/𝑍, 𝐻}.

If 𝑘𝑒𝑟(𝜙) = 𝐴2/𝑍, then 𝐴2/𝑍 ⊲ 𝐺/𝑍 and by Lemma 7.5 𝐴2 ⊲ 𝐺. This is a contradic-
tion since the normaliser in 𝐺 of 𝐴2 is a proper subgroup of 𝐺, thus 𝑘𝑒𝑟(𝜙) ≠ 𝐴2/𝑍.

If 𝑘𝑒𝑟(𝜙) = 𝐻, then 𝐻 ⊲ 𝐺/𝑍. Take an arbitrary 𝑥 ∈ 𝐺/𝑍. Since 𝐴2/𝑍 is a subgroup of
𝐻 we get,

𝑥(𝐴2/𝑍)𝑥−1 ⊂ 𝐻.

Furthermore, since 𝐴2/𝑍 has order 3, any subgroup conjugate to it has order 3. Since the
only subgroup of 𝐻 of order 3 is 𝐴2/𝑍, and since 𝑥 was chosen arbitrarily, 𝐴2/𝑍 ⊲ 𝐺/𝑍.
We have already shown that this leads to a contradiction, thus 𝑘𝑒𝑟(𝜙) ≠ 𝐻.

We conclude that 𝑘𝑒𝑟(𝜙) = {𝐼} and so 𝜙 is injective. Since 𝐺/𝑍 has 24 elements, it’s
image under 𝜙 is the whole of 𝑆4, that is 𝐺/𝑍 ≅ 𝑆4. Thus 𝐺 is a representation group of
𝑆4, denoted by 𝑆4 (for a full defintion of this, see [?]). Suzuki proves that 𝑆4 has 2 distinct
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representation groups up to isomorphism [?, p.301], which are distinguished by the property
that the elements corresponding to transpositions have either order 2 or order 4. Since 𝐺
has a unique element of order 2, it must be isomorphic to the representation group of 𝑆4 in
which the transpositions correspond to the elements of order 4, as desired.

Case VIc: 𝑔1 = 2, 𝑔2 = 3, 𝑔3 = 5𝑔1 = 2, 𝑔2 = 3, 𝑔3 = 5𝑔1 = 2, 𝑔2 = 3, 𝑔3 = 5. In this case (7.32) becomes,

1
4 + 1

6 + 1
10 = 1

𝑔 + 1
2.

Thus |𝑔| = 60 and |𝐺| = 120. Observe that a simple relabelling of the maximal abelian
subgroups gives the same situation as described in Case Vd:. Thus 𝐺 ≅ SL2(5), however
in this case 𝑝 does not divide |𝐺|.

7.3 Dickson’s Classification Theorem
We now state the main result of this paper, Dickson’s classification of finite subgroups of
SL2(𝐹). Observe that it is not the focus of this paper to determine whether the following
groups actually exist, rather that this theorem can be regarded as an upper bound, so to
speak, of the only possible subgroups of SL2(𝐹).

Theorem 7.6. Let 𝐹 be an arbitary algebraically closed field of characteristic 𝑝. Any finite
subgroup 𝐺 of SL2(𝐹) is isomorphic to one of the following groups.

Class I: When 𝑝 = 0 or |𝐺| is relatively prime to 𝑝:
(i) A cyclic group.

(ii) The group defined by the presentation:

⟨ 𝑥, 𝑦 | 𝑥𝑛 = 𝑦2, 𝑦𝑥𝑦−1 = 𝑥−1 ⟩.

(iii) The Special Linear Group SL2(3).

(iv) The Special Linear Group SL2(5).

(v) 𝑆4, the representation group of 𝑆4 in which the transpositions correspond to the elements
of order 4.

Class II: When |𝐺| is divisible by 𝑝:
(vi) 𝑄 is elementary abelian, 𝑄 ⊲ 𝐺 and 𝐺/𝑄 is a cyclic group whose order is relatively
prime to 𝑝.

(vii) 𝑝 = 2 and 𝐺 is a dihedral group of order 2𝑛, where 𝑛 is odd.

(viii) The Special Linear Group SL2(5), where 𝑝 = 3 = 𝑞.

(ix) The Special Linear Group SL2(𝔽𝑞).

(x) The group ⟨SL2(𝔽𝑞), 𝑑𝜋⟩, where SL2(𝔽𝑞) ⊲ ⟨SL2(𝔽𝑞), 𝑑𝜋⟩.

63



Here, 𝑄 is a Sylow 𝑝-subgroup of 𝐺 of order 𝑞, 𝔽𝑞 is a field of 𝑞 elements, 𝔽𝑞2 is a field
of 𝑞2 elements, 𝜋 ∈ 𝔽𝑞2 ∖ 𝔽𝑞 and 𝜋2 ∈ 𝔽𝑞.

Proof. If 𝑍 ⊄ 𝐺, then 𝐺 has no element of order 2 and |𝐺| is therefore odd. Observe that
in Cases II, IV, V and VI, |𝐺| is always even, thus we have either Case I or III. These
correspond to Class I (i) or Class II (vi).

If 𝑍 ⊂ 𝐺, then 𝐺 has the same structure as one of the 6 cases previously discussed. We
match the separate cases to the above classes.

Case Ia: This leads to Class I (i).
Case Ib: This leads to Class II (vi).
Case IIa: This leads to Class I (ii) where 𝑛 is odd.
Case IIb: This leads to Class I (iii).
Case III: If 𝐺 = 𝑍 this leads to Class I (i), otherwise to Class II (vi).
Case IVa: This leads to Class II (vii).
Case IVb: This leads to Class II (ix) with 𝑞 = 3.
Case Va: This leads to Class II (ix).
Case Vb: This leads to Class II (x).
Case Vc: This leads to Class II (x) with 𝑞 = 3.
Case Vd: This leads to Class II (viii).
Case VIa: This leads to Class I (ii) where 𝑛 is even.
Case VIb: This leads to Class I (v).
Case VIc: This leads to Class I (iv).
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